Subject: Concepts Vectors
Posted by Wayne Parham on Mon, 15 Dec 2025 00:55:19 GMT
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I've often said that Large Language Models are "blind, deaf and dumb but very, very well read.”

| realize that phrase is not very politically correct but it perfectly describes the idea. That idea is

essentially that LLMs don't know anything but they can quote just about everything. Because of

that, they are incredibly useful for some things but terrible at others. And they give a false sense
of accuracy that can actually be dangerous.

Because of that - and because Al researchers historically included analogical reasoning as
requisite - | propose a slightly different twist. | propose creating a collection of Concept
Classifiers using multi-modal training data to provide a machine the ability to identify and
understand concepts.

The process would start with the most simple concepts, such as inside/outside,
above/below/beside, visible/hidden and so on. Those then can be embedded into a network
such that concept similarities can be tested. More complex concepts can also be formed, some
using a collection of primitive concepts. The library of concept classifiers and their successful
embeddings in a network will be very useful for true machine learning.

This is not a new concept at all. It comes from the very beginning of Al research:

Dartmouth Proposal for Summer Research Project on Atrtificial Intelligence, August 1955

It seems to me that we've made great progress in machine learning since then but that our
infatuation with the most recent technology - the LLM approach - has set us off course.
Practically everyone is putting all emphasis in large language models. They come with some
variety, in that we've added modalities other than text. We've manipulated the structure and
depth of network layers. And we've added things like Retrieval Augmented Generation and
Conversational Memory, which enhance the ability of the models. But all these things are still
just helping an approach that is still "blind, deaf and dumb," in my opinion.

Here's an example. As a software developer, | find that the 2025-era LLM tools are great for
searching large logfiles for errors and analyzing large codebases, looking for specific patterns.
They are "smart” enough to be able to find things not directly asked for, but asked about. So |
don't have to necessarily search for a specific word or phrase and can instead ask for a place that
might have caused a certain behavior. That's really useful.

These LLMs are also pretty good at examining the documentation for APIs and various language
versions. That's really useful too, because when looking through a codebase, it can usually
determine language and even version level, sometimes suggesting more modern approaches that
work with the latest version of whatever language the code was written for. The developer can
tell the LLM to confine its suggestions to a specific version, and it can generally respect that too.

Really cool stuff.

Where it falls on its face is understanding the meaning behind the code it's talking about. It can
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usually identify the purpose of the code, often times even pointing out subtle details. When
doing this, the developer is often lulled into a false sense of the LLMs understanding. It's easy to
think the LLM "really gets it." But it does not. It only recognizes patterns, and having been
trained on other similar patterns, it generates a response that is appropriately describing those
patterns, substituting in your variable names, of course.

Here's an example. My little Aliza chatbot employs retrieval augmented generation and so it has
RAG-document management code. Some of that involves metadata that is tied to the document
or document segment and other metadata that is tied to the initial RAG-document query results.
The metadata tied to the query involves similarity matching whereas the data tied to the
document involves things like flename and usage. One set of metadata is about the data
documents and the other is about the query. Those are two very different things.

But when | asked an LLM - actually, any of them, all the best anyone has ever done thus far - to
write code to inject metadata at the document level, the LLM regularly mixed up those two sets of
metadata and inadvertently tried to attach the document metadata to the content metadata
returned from a RAG query. That's not the right place for document metadata, so there was a
mismatch. Later in the pipeline, the injected document metadata would not be there, of course,
because it was attached to the query content.

When given the logfiles to examine to find the reason for the lost metadata, the LLM would
conclude that the functions used to get the metadata weren't working, when in fact, it was looking
in the wrong place. The LLM fundamentally didn't see the difference between document-centric
metadata and query-centric metadata. So after looking in the wrong place, finding the metadata
functions came up blank, its solution was to give up using either the document or query metadata
at all and to create a separate external store for this kind of information. It was creating a Rube
Goldberg machine for processing metadata because it did not understand the concept.

This was not an isolated behavior either. It's not that one company's LLM was lacking here but
others were getting it. None of the LLMs | used found this - they all acted the same way. And
in hindsight, I'm not surprised. The LLM was being asked to write some code that it had very
little in the way of training data to solve. It was a pattern it hadn't seen before. After all, the
whole matter of LLM programming is pretty new.

But the problem itself wasn't new and it wasn't complicated. It was actually pretty simple.

When | noticed that the query contents were being examined rather than the document
segments within, | realized what the problem was. And when | pointed it out to the LLM, it then
responded with an "A-ha" response, more like "Of course, this explains why the metadata wasn't
present." Once shown the problem, the LLM could "grasp" it. But it would never have been
able to analyze the problem without outside help because it fundamentally doesn't understand
concepts. It only knows patterns and probabilities.

Here's another problem, one that | think is much more alarming. | don't worry about these things
and see a "sky is falling" doomsday scenario but | do think it is unwise to lean heavily on Al unless
and until we embed concepts. Without understanding concepts, the LLM will only be able to
make decisions based on surface-level data. And sometimes that "surface-level" data will be
fundamentally based on trivial artifacts that don't encapsulate the matter at hand.
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An example is in Melanie Mitchel's book, "Atrtificial Intelligence: A Guide for Thinking Humans."
She writes about a graduate student studying image classifiers trained to examine photographs
and identify animals. What this graduate student ultimately found was that his image classifier
was matching images with blurry backgrounds instead of matching the animal, itself. Having a
blurry background was common in pictures of animals, so it worked most times. But it also
would be the case in any other photograph with a blurry background.

If the system understood concepts, it would not use such a simplifying analysis to identify animals.

That is one funny example, but here is one that isn't so funny. Let's say you are a company that
is using LLMs to evaluate account data for a healthcare provider or insurer. Your LLM is looking
for trends that tend to help reduce addiction to narcotics. One of the main source of metrics
would be to monitor the patients' attempts to obtain prescriptions. Another metric would be
found in admissions to drug treatment centers and the like.

One might see the obvious, which is that things that tended to reduce the number of requests for
narcotic prescriptions and admissions to treatment centers are things that are useful for reducing
drug addiction relapse. The problem, of course, is that death from overdose will also reduce
prescription requests and treatment center admissions to zero. So unless the system
understands this concept, it may make the mistake of misinterpreting the data.

Currently, these kinds of things are addressed with "guardrail" approaches. The developers of
systems attempt to test for conditions like those, and where found, programming is introduced that
nudges the system towards the intended response. But this is a band-aid fix, in my opinion.

The ultimate solution is to teach concepts to our systems.

Subject: Re: Concepts Vectors
Posted by Wayne Parham on Mon, 26 Jan 2026 16:38:46 GMT
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| have recently trained the Aliza LLM on the concepts and implementation details of using concept
vectors, embeddings and classifiers to form what | would call a "Large Concepts Model" (LCM)
approach to machine intelligence.

Setting aside the irony of training an LLM to "understand” an LCM, it is able to discuss the
approach and to articulate its strengths and benefits. It can compare and contrast the LCM
approach with other competing technologies and even to assist in implementation strategies.

| encourage anyone interested in machine learning to have a conversation with Aliza about the
application of multi-parameter concepts classifiers to achieve machine intelligence.
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