Subject: Artificial Intelligence
Posted by Wayne Parham on Sun, 01 Oct 2023 22:59:08 GMT

View Forum Message <> Reply to Message

| was a boy in the 1960s, and watched the first moon landing on television. The Apollo spaceship
didn't have warp drive like the Enterprise from the Star Trek television series | loved, but the moon
landing had the benefit of being a non-fiction, real-life actual event. Those were incredible times.

And becoming a teenager in the 1970s was just as exciting. | was too young to appreciate the
difficulties of the economy - probably America's first difficult time since WWII - but | was not too
young to appreciate the excitements of advances in electronics and computer technologies. It
was the perfect time for a boy like me to come of age, because | was able to afford one of the first
kinds of computers that most anyone could own, a microcomputer. My first one was a Synertek
System's Sym-1, which was a fairly competent machine with a BASIC interpreter in ROM and
enough memory to write simple programs. It also has a lot of digital I/O lines, which made it a
perfect system for robotics, which | loved.

In 1976, the first Star Wars movie came out. | loved the robots, and thought to myself, | could
build R2-D2. Easy to build, really, pretty much just a platform with the Sym-1 for a brain, two
stepper-motors to drive two wheels and a trailing passive castor wheel for a third. The June 77
issue of Byte Magazine had an article about a similar robot called NEWT that had a camera for
input, and could recognize a wall socket to plug itself into when low on batteries. All super cool
and so do-able. The software was rules-based, an importance-rated hierarchy of status and
environmental possibilities and appropriate responses. | even designed a miniature version with
reduced capabilities that | considered selling as a toy.

A few things happened around that same time that had a large influence upon me. First was
Douglas Hofstadter's book, "Gddel, Escher, Bach." That was both inspirational and

philosophical, and | loved some parts and hated others but it definitely made an impact, especially
"Ant Fugue." Another was learning about neural networks and seeing Marvin Minsky's Atrtificial
Intelligence lab at MIT.

Sadly, my first introduction to neural networks was at a time they were being somewhat dismissed
but within a few years, new approaches were being discussed like a methodology called
subsumption architecture and improved multi-layered neural networks using backpropagation for
training. Those both caught my attention.

Rules-based software is probably the most common form of machine intelligence, and it's called
"symbolic artificial intelligence." Most software - really, whether it is supposed to be "artificial
intelligence” or not - is a set of rules codified in a computer program. That's what the software in a
general purpose computer does: It takes input of some kind, then makes some decisions based
on the input and takes actions. These inputs can be from sensors and actions can be made by
motor movements. Or the inputs can be from a keyboard and the action can be to display images
on a screen.

One popular type of artificial intelligence program is called an "expert system," which uses a
series of rules to suggest possibilities in a particular field that replicate what an expert specialist in

Page 1 of 7 ---- Generated from Bell a Vi sta Babel fish

http://parhamdata.com/forum/index.php?t=usrinfo&id=3
http://parhamdata.com/forum/index.php?t=rview&th=22152&goto=88840#msg_88840
http://parhamdata.com/forum/index.php?t=post&reply_to=88840
http://parhamdata.com/forum/index.php

that field might suggest. At its core is database or "knowledge base" and a rules engine,
sometimes also called an inference engine.

There's another kind of machine intelligence called "sub-symbolic artificial intelligence" that has
been a little more controversial over the years. It is the one I'm most fascinated by because it is
essentially built with logic circuits that most closely emulate neurons in the human (and other
animals) brains and nervous systems. Systems with these simulated neurons are called "neural
networks." This approach has been around as long as symbolic Al, but it has come and gone in
popularity over the years.

You can visualize the difference between symbolic and sub-symbolic systems using an analog of
your own mental processes. When you think a conscious thought - perhaps balancing your
checkbook or writing a document - you are using symbolic processing. Your thoughts are like an
internal dialog of instructions, plans of something you intend to do. You carry those plans out
mentally, taking some actions or making mental notes of what to do next. All of those instructions
can be "accessed" - you can describe the process verbally or you can write it down.

On the other hand, when you form a habit or when you practice something physical, you are using
sub-symbolic processing. You aren't so much thinking about what you need to do, but are rather
"just doing it." You are practicing the task you need to perform, improving with each attempt. The
things you "learn"” are subtle, minute corrections. It's not so easy to describe the process or the
ways you have improved. In fact, you do not know exactly what corrections you have made. You
just seem to get better with practice.

This is very much the same way these kinds of machine intelligence systems are codified.
Symbolic systems are essentially rules based and the rules can be easily recorded, modified and
described. Sub-symbolic systems are iteratively trained, with minute corrections made after each
iteration. The resulting state is a little less easy to quantify or to modify in a deterministic fashion.
You can continually train a neural network - and you can record its entire state - but it isn't as easy
to describe like you would a set of rules.

More traditional rules-based systems have seen less volatility in their popularity because all
conventional computer programs are rules-based, whether or not they are described as Al or not.
| think this has been one of the reasons that symbolic Al has been more common, at least over
the long haul. There are a lot of applications that have been written in the last fifty years that used
symbolic Al in some form. One could make the argument that all computer programs are
symbolic Al, in at least some sense.

Sub-symbolic Al is controversial - and interesting, in my opinion - for the very reason that it is
useful. You don't program a neural network the same way you do a rules-based system. Instead,
you "train” it by presenting it with data and allowing it to make random choices based on that data
at first. Each training iteration, "correct" decisions are recorded by modifying each neuron's input
in a way that favors the state of that input. Incorrect decisions are recorded by modifying each
neuron's inputs to oppose their input states. The recorded states are called weighting and the
process of doing it is called back-propagation.

Each neuron has as many inputs as nodes that it needs to analyze. Those nodes can be sensor
inputs or they can be outputs from other neurons. The output is generated based on the total of

Page 2 of 7 ---- Generated from Bell a Vi sta Babel fish

http://parhamdata.com/forum/index.php

all inputs and their weights. So for example, if the inputs are a two-dimensional array that is
formed by the pixels of an image, then input weights would be set to expect something in some
pixels, to expect nothing in other pixels and an in-between weight for pixels that don't matter as
much. This is a common case for alpha-numeric character recognition, where each neuron is
looking for exactly one character.

The thing is, training is a lengthy process that requires a lot of data. And the end result isn't really
a concrete network "state" that is easy to analyze. It's more like a fuzzy soup of weighting data.
Another problem is the training conditions often create unusual side effects, that are a lot like
"edge cases" in more traditional programs.

An edge case in a rules-based program is something that is rare and that might not have been
considered by the programmers. In such a scenario, the program may not have any rule to deal
with the edge case and its default may not be appropriate.

Similarly, a dataset used to program a neural network may have peculiarities that adjust the
network weighting to make unusual choices. An example is something that happened to one Al
research team, when training its image-recognition networks to identify a photo of a dog. Since
dogs are often running when photos are taken of them, the photographs often have blurry
backgrounds. So after training, the network could often identify dogs but then again, it often
incorrectly identified other objects with blurry backgrounds as dogs.

The Large Language Model (LLM) approach used to make the "chatbots" that suddenly became
so popular in 2022 can suffer a similar fate. The LLM approach is essentially a language parser
that uses a neural network to scan and process sentences, having a large database of information
- sometimes the whole internet or a large part of it - as its training datasource. Its training
sometimes results in improper inferences, and so certain questions or lines of dialog cause it to
respond with inaccurate answers or even utter nonsense. This is another example of the "blurry
dog" problem, and the silly responses from the chatbots are called "hallucinations."”

For these kinds of reasons, neural networks have been controversial. They often do incredible
things, but then again, they sometimes make really bad (and sometimes embarrassing) decisions
right when they are being demoed to an important stakeholder. This has caused them to fall out
of favor more than once, creating what some have called "Al winters,"” where funding from
government, scientific and corporate organizations dries up, seemingly overnight.

Where | personally have been most impressed by neural networks is projects where they have
been used for complex locomotion training, like bipedal and quadrupedal walking, jumping and
even more advanced movements such as acrobatics and dancing. If you think about it, that's a
place where the training of a neural network makes a lot of sense. It's very effective for that kind
of thing. It has proven to be very good at things like speech recognition and image recognition,
provided it is trained enough to prevent the "blurry dog" scenario.

Another computing approach that | particularly like is called genetic algorithms. The idea is to
start off with a set of randomly chosen procedural approaches or "individuals" to solve a problem,
with each approach having a series of steps or rules. The individuals are "evolved" iteratively with
each successive run being evaluated by determining the success of each individual approach
after each iteration.

Page 3 of 7 ---- Generated from Bell a Vi sta Babel fish

http://parhamdata.com/forum/index.php

Success of an individual is determined by its "fitness," which is its effectiveness in solving the
problem. Those that are most successful are selected for inclusion in the next iteration. Each
chosen individual is modified or "mutated" before the next iteration by adding small random
changes or by morphing with other successful individuals. The next generation of candidates is
then used in the next iteration of the algorithm. The algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory fitness level has been reached for the
population.

Some people experimented with the idea of using rules-based symbolic Al but taking inputs and
making them "fuzzy." The idea is that many - perhaps most - things aren't true or false but rather
"mostly true" or "occasionally false" or just plain "maybe." Fuzzy logic attempts to address that by
making inputs act more like an analog signal - something between "on" or "off." The
decision-making process becomes more of a gradient and the output is then a percentage too. It
can give an answer with an estimate of probability.

A similar method is called probabilistic machine learning, which is similar to fuzzy logic or could be
said to be an extension of that approach. Probabilistic models are a class of machine learning
algorithms for making predictions based on probability and statistics. These models identify
uncertain relationships between variables in a data-driven manner to find patterns and trends
inherent in the data.

One popular form of probabilistic model is called the Monte Carlo method, which is a sort of
multiple probability simulation. It's a mathematical technique that is used to estimate the possible
outcomes of an uncertain event. The Monte Carlo method is actually as old as modern computing
itself, having been invented by John von Neumann and Stanislaw Ulam during World War Il to
improve decision making under uncertain conditions. It was named after a city that is known for its
casinos - Monaco - because the element of chance is used in the modeling approach, similar to a
game of roulette.

At its core, the Monte Carlo method uses a model containing several possible results which
defines a probability distribution for any variable that has inherent uncertainty. Several iterations
are run, recalculating results over and over, each time using a different set of random numbers
between the minimum and maximum values. This procedure can be repeated thousands of times
to produce a large number of likely outcomes. The more iterations that are run, the more accurate
is the long-term prediction, at least in a sense of overall trends.

Subsumption architecture is another interesting approach, useful for physical control
architectures. It's not a neural network, but it isn't a "top-down" rules approach either. Instead of
guiding behavior by symbolic mental representations of the world, subsumption architecture
couples sensory information to action selection in an intimate and bottom-up fashion.

It does this by decomposing the complete behavior into sub-behaviors. These sub-behaviors are
organized into a hierarchy of layers. Each layer implements a particular level of overall behavior,
and higher levels are able to subsume lower levels in order to create viable behavior. For
example, a robot's lowest layer could be "avoid an object". The second layer would be "wander
around”, and that runs beneath the third layer "explore the world". Because a robot must have the
ability to "avoid objects" in order to "wander around" effectively, the subsumption architecture

Page 4 of 7 ---- Generated from Bell a Vi sta Babel fish

http://parhamdata.com/forum/index.php

creates a system in which the higher layers utilize the lower-level competencies. The layers,
which all receive sensor-information, work in parallel and generate outputs. These outputs can be
commands to actuators, or signals that suppress or inhibit other layers.

Most Al systems do not use a singular approach, but rather combine several or at least a couple
of those described above. Even when one architecture is dominant, others are generally used as
sort of checks-and-balances or to aid functionality that isn't particularly feasible in the primary
architecture. And in the case of neural networks and other approaches that are "trained," complex
systemic behavior. In fact, that's usually the case and is one of the benefits but also one of the
biggest challenges in artificial intelligence systems.

Subject: Re: Atrtificial Intelligence
Posted by decentcitizen on Mon, 29 Jan 2024 22:46:09 GMT

View Forum Message <> Reply to Message

This is a remarkable resource. The author is not only displays a mastery of competing approaches
to developing reliable software and hardware emulating cognitive processes but does so in an
accessible manner. The challenge faced by most academics is not developing cogent theories
based on empirical evidence but in conveying the results of that research. Without intending to
denigrate these important contributions to knowledge, it must be observed that proficiency with
subject matter is distinct from the capacity to impart that knowledge. Being a competent scholar
and researcher does not make one a good writer. The author is an excellent writer who makes
explains highly technical information in simple terms with low impact vocabulary, making the
subject available to individuals who may have difficulty following post-doctoral language. Anyone
can understand it without the benefit of advanced education. This is an astonishing
accomplishment.

Subject: Re: Atrtificial Intelligence
Posted by Wayne Parham on Sat, 24 May 2025 21:59:55 GMT

View Forum Message <> Reply to Message

Thanks for your kind words. Honestly, I'm just kind of recording my thoughts because | think
they might be useful, if even only marginally. There are some really smart folks out there
studying this stuff, but right now, I think we're kind of in a "retrograde™ position in our learning
curve. We've had such success with Large Language Models (LLM), that I think we've sort of
forgotten some of the earlier intellectual exercises on our path.

Once we pushed past single-layer Perceptrons to a few layers, and then onto multiple-payer
convolutional networks, we were able to do some pretty good image processing and image
recognition. This moved onto real-time feeds and language through LLMs, and once there, we
seemed to try to fit everything onto that kind of technology. It does do some remarkable things.
But we seem to have become so excited with LLMs that we try to fit everything into that approach.

Page 5 of 7 ---- Generated from Bella Vi sta Babel fish

http://parhamdata.com/forum/index.php?t=usrinfo&id=8518
http://parhamdata.com/forum/index.php?t=rview&th=22152&goto=88841#msg_88841
http://parhamdata.com/forum/index.php?t=post&reply_to=88841
http://parhamdata.com/forum/index.php?t=usrinfo&id=3
http://parhamdata.com/forum/index.php?t=rview&th=22152&goto=88846#msg_88846
http://parhamdata.com/forum/index.php?t=post&reply_to=88846
http://parhamdata.com/forum/index.php

It's like once we got to that point, we became so enamored with the technology that we stopped
looking elsewhere. We began to see LLMs as the universal tool, the crescent wrench of the
digital domain.

LLMs depend on huge databases of tokenized words, and the relationships between words -
mostly their closeness in many sentences - is what is used for searches. It works, but it's
inefficient and somewhat more inaccurate.

In the old days, documents were searched on perfect matches. This was too limiting so fuzzy
methods were also employed. In addition to queries for perfectly equal matches, we added a

"like" search query for near matches. That helped, but it was still somewhat limiting. And now
that we can use huge bodies of LLM tokenized data for searches, we essentially have a fuzzy
search of a huge corpus of data.

This works very well for what it is. It is useful. We can do some incredible stuff with this
technology. But the machines don't know a thing. They don't know up from down, inside from
outside, equal from inequal. They know words, even many formulas. But they do not know
concepts.

Back in the 1970s and 1980s, | was influenced heavily by the idea that machines needed to be
able to do analogical reasoning in order to proceed onto other more advanced "thought." The
idea | took from that is our machines need to be able to understand concepts before anything
else. | still think that's true.

There is a very cool research group called DeepMind and they've done some remarkable things.
Truly remarkable. They do it by combining LLMs with other approaches that can self-learn.

It's an excellent approach, because fairly sophisticated concepts can be taught, and this
approach takes it to another level.

But I cannot help but wonder if we're doing it fundamentally wrong, backwards sort of. Instead of
helping the LLM by using genetic algorithm techniques to self-learn specific higher-level concepts,
why not instead have the concept-learning be done at the absolute lowest level?

When | think about how animals learn - including early man - it must start with primitive concepts.
There is obviously no language at this level. Thought is pure concept recognition.

There is the fight-or-flight mode. The concept is "danger." It's a thought like an exclamation
point.

Then there's the thought - the concept - of what caused the danger. Predator. Tiger. Lion.
It's an image of the creature. Might be a memory of an image of the creature tearing into
another creature at the end of a fight, devouring it.

The concept of wound. Of death. The concept of hunger. Maybe a concept of sharpened
pole to be used to impale. A fish. Impaling a fish. Eating it. Hunger quenched.

Or maybe of a hanging fruit. Eating it. Some taste good. Some satisfy hunger. Some are

Page 6 of 7 ---- Generated from Bell a Vi sta Babel fish

http://parhamdata.com/forum/index.php

poisonous. So the concept of sickness. Danger of poison. Death from that, an adjacent
concept to death from wound.

All these kinds of concepts are essentially causality maps. They're self-constructed simplifying
explanations of things experienced. They start as mental images or video-like sequences. An
experience is perceived, and a quick decision/conclusion is formed that explains the experience.
The images and sounds may be remembered, or that memory may fade over time. But the
concept that was learned is stored, and through repeated similar experiences, the concept is
reinforced in memory.

The simplifying explanation of a concept also makes it very efficient to store in memory and to
process. It doesn't require all memories of past events to be recalled. They can be allowed to
fade. The reinforcement by new events that are similar strengthens the concept in memory
without needing to store and process all details of past events.

Language itself is a concept. And in describing things using language, other concepts can be
explored. Concepts about concepts. Concepts in the past, concepts in the future. Time is a
concept too.

All these concepts are very low-level information objects. They don't arise out of a word soup,
as some LLM enthusiasts argue. That's why | think we're in a retrograde position now. Our
understanding is an eddy current.

| think we need to go back to low-level analogical reasoning. We need to develop neural
network topologies that can explore concepts. We need to nudge them into learning those
low-level concepts. And then assign words to the concepts. Instead of having tokenized
words, we need tokenized concepts. We need concepts vectors.

In a concepts vectoring approach, the embeddings are similar, in that each concept is ranked by
its similarity to other concepts. Concepts that are similar or that are often used together would
have closer vectors. So the approach is the same as with other modes.

| personally think this is a very important next step. Instead of training on words, sounds,
images or other symbols or representations of concepts, we need to train in the concepts
themselves. We then associate those concepts with descriptive words, images and sounds.
Only then can we expect true understanding.

| also think that once the core modality is concepts, that's when the machine will gain a sense of
self and a sense of its place in its environment. It will be able to develop new concepts and
concept associations, and be capable of learning through its experience.

Page 7 of 7 ---- Generated from Bel | a Vi sta Babel fish

http://parhamdata.com/forum/index.php

