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Preface

This book is different. These pages do not speak of BASIC or FOR-
TRAN or COBOL or PASCAL. All worthy languages, but all written in
the language this book teaches—assembly language. This book teaches
assembly language for the 1802 microprocessor. And this book has some-
thing few assembly language primers have. An assembler.

From the binary number system to the fundamentals of machine
language to the development of a working 1802 assembler, this book has
something for all. Each of the 1802’s instructions is explained in detail.
The text is written in nontechnical language simple enough for beginners
but with information that will be appreciated even by experts.

Whatever your personal interest, even if only to examine the power
of the popular 1802 microprocessor, this book is for you.

To the prospective buyer: The assembler in Chapter 4 is the result
of many efforts, some grander than others, to construct a tool that all
1802 users will be able to run on their computers.

Although the program does not support the use of labels, macros,
or mathematical expressions, this assembler recognizes all 1802 mne-
monics as recommended by the manufacturer. One bonus feature of the
program is its ability to function as a disassembler as well as an assembler
by using a different entry point. Also you may add mnemonics to the op
code table or even change the manufacturer’s standard names to your
own designs if you wish.

You will need to supply input and output to the assembler depend-
ing on your computer’s operating system. All coding is in standard AS-
CII form, however, and all parameters and entry/exit points are clearly
marked and explained.

Best wishes and good luck in all of your efforts.

ToMm SWAN
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A System of Numbers—A
Number of Systems

1010 Little Indians

The decimal number system with its 10 symbols so familiar to us
is far too complicated for most digital computers to understand. The
binary number system, on the other hand, with its two (“bi”) symbols
one and zero, is perfectly suited to the internal mysteries of computers.

Electrically, values in the binary number system may be repre-
sented by switches that are on (1) and off (0). In a nutshell, this is how
computers understand and manipulate numbers—by controlling and test-
ing series of switches representing values in the binary number system.

A computer’s power comes from its ability to control more of these
switches than the number of light switches in all the homes of a good-
sized town. Until a way was found to place all those switches in the small
plastic chips called integrated circuits (ICs), some early computers used
a room (a big room) full of relays, each relay representing either a 1 (on)
or a 0 (off) in binary. Running a program in those days sounded somewhat
like 10 minutes to deadline down at the newsroom of the Daily Bugle.
And though memory was no doubt as reliable as an elephant’s, it had
the disadvantage of coming in a package of about the same size.

Here is the decimal number 1,232 expressed in binary:

1232,, = 0100 1101 0000,

The small number down and to the right is there to indicate which
number system was used to express the quantity. The 10 means that the
decimal system was used, while the 2 tells us that the number is a binary
number. This is called the base of the number and without it things could
get very confusing. For example, what value does 10111010 represent?
In decimal, this would be 10 million, one hundred eleven thousand and
ten. In binary, the same number would represent the quantity 186,
which is read “one hundred eighty-six, base 10.” (Binary numbers will

1
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RCA popular VIP computer is powered by the 1802 COSMAC Microprocessor.
(Courtesy RCA Corporation)

usually be grouped into sections of four digits from now on to help distin-
guish the binary values from decimals. In obvious cases, the base will not
be written.)

Learning the binary number system will be easier if we take a
moment to review the decimal version of counting, which you memorized
when you were a child. The word decimal (from the Latin decima or
decimalis) refers to the number of symbols used to represent values.
These symbols are, of course, the Arabic 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Combinations of these 10 symbols produce unique and recognizable num-
bers of any conceivable values.

Suppose, however, that 10 different symbols, also referred to as
the coefficients of a number system, had been chosen instead of our
familiar Arabics. For example, 0 * () + % X /; : or any others. Then we
would have memorized these instead, and the telephone number 555-
5657 would look like %%%-%X%l/. Notice that the two numbers are the
same—only the symbols used to represent the same phone number have
been changed.

We may therefore conclude that any number may be represented
in either of the number systems. The symbols themselves acquire what-
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ever meaning we choose to give them. Given an infinite set of number
systems, any number could be represented in an infinite variety of ways.

Then how does a number keep its individuality since, after all, the
10 symbols we have to use in the decimal system do not necessarily
appear uniquely in that number? In fact, the same symbols may be used
over and over, perhaps even duplicated many times. For example, 1,223
is a unique number, although the same symbol, the 2, appears twice.
However, 1,232 is definitely not equal to 1,223, although it uses the exact
same symbols. Obviously, the position of each symbol tells us something
about the value of the number.

Each column of a number has an inherent value and each symbol
appearing in a column simply tells us how many of those values are
contained in the number. The power of a column increases in ascending
order moving from right to left. Our example, 1,232, could be read as
containing 1 1000; 2 100s; 3 10s; and 2 1s. For every number system we
will consider—binary, hexadecimal, vigesimal, octal—all of these (in-
cluding decimal) use the same idea of positioning different symbols in
columns of fixed powers.

The above example in mathematical form is:

1,232 = (1 x 1,000) + (2 x 100) + (3 x 10) + (2 x 1)

Mathematicians are not fond of writing zeros apparently, so the
above is usually further reduced as follows:

1,232 = (1 x 10%) + (2 x 10%) + (3 x 10") + (2 x 109

Note that instead of writing the numbers 1,000, 100, ete., we have
instead written 10%, 10%, ete. The little number above and to the right of
each 10 is called the exponent of that number and indicates that the value
we want is really that number of 10s multiplied together. In other words:

10% = 10 x 10 x 10 = 1,000
10% = 10 x 10 = 100
22=2x2x2=8

2=2x2=4

It is common to express the value 10* as “ten to the third power”;
10% as “ten to the second power”; ete. Carrying things further, we can
express our example number like this:

1,232 = 0 x 10* = 0 x 10,000 = 00000
1x10°=1x 1,000= 1000
2x100=2x 100 = 200
3x10'=3 x 10 = 30
2x10°=2x 1=+ 2

01232
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The leading zero was included to show that, of course, any column
with zero in it equals nothing. In fact, zero will mean absolutely nothing
at all throughout the remainder of this book! (This is not as facetious a
thing to say as you may think. The discovery that nothing, or zero, could
be used to hold a position in a number signifying that the column equals
zero was no small discovery. The revelation made modern math possi-
ble—and computers!—and is attributed to an unknown Hindu supposedly
living before the ninth century according to some references, and as early
as the first century according to others.)

As in decimal, binary symbols are written in columns of fixed pow-
ers. Since there are only 1s and Os in binary, however, a column either
has a value or it doesn’t. To save space, let’s work on a small binary
number, figuring its value just as we did for the decimal number 1,232.
Instead of using the powers of 10 to figure the decimal equivalent of a
binary number, however, we will use the powers of 2, the base or radix
of the binary number system.

(Binary) 1101, =1 x2*=1x2x2x2= 8
Yipe R = 1%2x2= 4
D 2h= DxZ= 0
1x2°= 1x1=_1
13, (Decimal)

The binary number, 1101, has been converted into its decimal
equivalent 13. To go the other way from decimal to binary is just as
easy—simply divide by 2, writing down the remainders from right to left
until you can go no further. In other words, reverse the above process.
An example will help. Let’s use 13,, again:

13/2 = 6 plus a remainder of 1
6/2 = 3 plus a remainder of 0
3/2 = 1 plus a remainder of 1
1/2 = 0 plus a remainder of 1

Reading the remainders from bottom to top, 1101 proves to be the
binary equivalent of the decimal value 13. (If you write down the re-
mainders from right to left as you divide, you'll avoid switching things
around accidentally.)

To represent large quantities in binary, a lot of 1s and 0Os are
needed. Computers don’t mind, but the binary number 1110 1011 1100
1101, which equals 60,365,, is not clearly recognizable by humans. A
way around this problem will be covered later. More important is for you
to understand that any value may be expressed in the decimal, binary,
or any other number system!

Backing up just a little, notice that the conversion from binary to
decimal used the base of the number raised to a particular power to
figure the value of a digit in any column. In decimal we used the powers
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of 10. In binary, the powers of 2 were used. In the hexadecimal number
system, we would use the powers of 16. In the rather specialized binary
system of a certain western tribe of the Torres Straits, the powers of
“okosa” might be used. Whatever number system you are using, the
value of any digit is equal (in decimal) to that digit times the base number
raised to the appropriate power. The powers are always 0,1,2,3, ... N
starting from the right and working to the left. An important rule to
memorize is that the units column of any number system always has a
power of 1. That is: 10° = 1 and 2° = 1 as well as 16° = 1 and okosa® =
1.

Table 1-1 shows the binary equivalents for the decimal numbers 0
to 9.

Table 1-1.
Binary Counting
Decimal Binary Decimal Binary
0 = 0 5 = 101
1 = 1 6 = 110
2 - 10 7 B 111
3 = 11 8 = 1000
4 = 100 9 = 1001

Another system similar to binary was used in some early relay type
computers, which I've heard were known as “clack-u-lators.” While
Table 1-1 defines the binary number system as employed in most modern
computers, Table 1-2 presents the biquinary system as it was used on
those antique predecessors.

Table 1-2.
Biquinary Counting
Decimal Biquinary Decimal Biquinary
0 = 01 00001 5 = 10 00001
1 = 01 00010 6 = 10 00010
2 = 01 00100 7 = 10 00100
3 = 01 01000 8 = 10 01000
4 = 01 10000 9 = 10 10000

Notice the similarity of the biquinary system to the abacus, a me-
chanical device reputed to be as fast in the hands of an expert as a
modern calculator. Biquinary does not strietly follow the rules for posi-
tional number systems, so we will not see it again in this book.

Numbers less than 0 or fractions may also be expressed in terms
of their powers. For example, the number 123.45,, may be written using
negative exponents for the fractional part.
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128.45, =1 x 10* = 100
2x100 = 20
3x10" = 3
4 x107" = 040
5x 107 = + 0.05
123.454

The same holds true in other number systems.

110101, =1 x 22 =1x4 =
12 = L =] IZ
0x2 =0x1 = 8
1x21r=1% b5 = 0.b
0x22=0x .26 = 0.0
1x23%=1x .,1256 = 40.126
6.875y

To find the value of a number raised to a negative power, divide
the base you want by the multiple of the base you are trying to convert.
In other words, to get to decimal from base 2 or base 6:

1x2°%=104 2 x 67" =10/(6 x 2)
1x2% =108 and 4 x 672 =10/[4 x (6 x 6)]
1x 2 =10/16 1% 6% =10/(6 X 6 X 6)

Although floating point representations are beyond the scope of
this book, you should be aware that representing fractional numbers is
no more difficult than working purely with whole integers.

Exercises

1. Why is the binary number system used to represent values in a
computer?

2. Convert the following binary values to decimal:
a) 1111 b) 1011 ¢) 1101 1011 d) 1110 0110

3. Convert the following decimal values to binary:
a) 100 b) 64 c¢)249 d) 87

Binary Arithmetic
or
“1 + 1 =107

If you had written the above on a math exam, you would probably
have drawn the attention of the professor and possibly raised a few
eyebrows. If you had been adding binary numbers, however, the above
answer would have been correct! In order to understand how to add and
subtract binary numbers, we must again turn to the familiar decimal
system for a little guidance.
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Adding, with some variations, can be thought of as two processes:
counting and carrying. Numbers to be added are usually placed on top
of each other, and the values of each column are obtained by counting
them up. Using your fingers to add is a considered embarrassment, but
the 10 fingers of two hands, actually the source of our adapting the
decimal (base 10) number system, show very well the second part of the
adding process: carrying.

Just for illustration, add 8 + 6 on your fingers. Before you reach
the answer, you run out of fingers. (No fair using your toes—at least not
until we get to the vigesimal base 20 number system!) When adding,
everytime you run out of digits—appendages or the numerical types—
you would make a mental note or a mark on a piece of paper to signify a
carry. Of course, you already know this, but understanding exactly what
happens in the process of adding will help you to apply the same process
to other number systems. Here is a simple example of a decimal addition
and the equivalent values in binary.

Carries: 1
1 = 1
+1 = +1
2 10
Decimal Binary
EXAMPLE 1-1

I'm going to repeat the adding rule as it is crucial to your under-
standing of binary addition.

1. Count up the values in each column working from right to left.
2. Whenever you run out of symbols available in the number system,
generate a carry of 1 to the column immediately to the left.

Since there are only two symbols in the binary number system, it
does not take long to run out of symbols. In Example 1-1, two decimal
1s added together produce the number 2. No problem here; there are
plenty more symbols available. But adding two binary 1s cannot produce
a 2, since that symbol is not available in the binary system, which uses
only 1s and 0s. Therefore, following the adding rule, write down a 0 in
that column, generate a carry of 1 to the left and continue to add. Since
the next two columns are blank (I could have written the binary numbers
01 + 01 instead of 1 + 1), adding the carry of 1 to the two Os produces
a 1. The answer is 10,, which is probably best pronounced as “binary
one, zero” not as “ten” to avoid confusion.

The following addition produces two carries out of the first eolumn
to the column on the left. The two carries added together produce an-
other carry to the third column:
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Carries: 1
Carries: 11
01,
01,
01,
01,
+ 01,

1012 = 5;0
EXAMPLE 1-2

To prove that the answer is indeed equivalent to decimal five, mul-
tiply by the powers of 2 as previously explained.

10, =1 ¥ 2 =12 Ne= 4

O0x 2= 32 =
1% 29 = Ix1= 1
5:!!

Now for a few more complex examples. Work through each column,
counting and carrying in binary. Whenever 1 is added to 1, produce a
carry to the left and continue. (I have included the leading zeros to make
it easier for you.)

111
Carries: 1111 11111
01011, 001111,
00110, 001111,
+ 01001, + 001111,
11010, 101101,

Subtraction is equally simple, although later on we will examine a
way to subtract by adding, since that is how a computer usually accom-
plishes a binary subtraction. You should understand the process of sub-
tracting two binary numbers, however.,

Instead of a carry, whenever subtracting a 1 from a 0, a borrow is
needed from a column on the left. (Assume that the subtrahend on the
bottom is less than or equal to the minuend. We won’t worry about
binary negative numbers just yet.)

Minuend 1 10 11 101
— Subtrahend -1 -1 - 01 — 010
Answer 0 1 10 011

(All values in binary base 2 notation)

Again, in a coming chapter, I'll introduce the easy subtract method,
but you should work through the examples below to be familiar with the
process of binary subtraction. As your computer skills progress, you will
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call on your binary math abilities more and more. I sometimes even
convert values into binary from a more unfamiliar number system in
order to add them together and then convert the answers back again!
Even in the most complex computer programs, I find myself adding
binary numbers together. Your understanding of v.. :se simple processes
will reflect on your progress in programming on a machine language
level. After all, if you want to communicate with your computer, you
both have to speak the same language!

Exercises
1. Add the following binary values. (The base 2 indication has been
left out here. Assume that the following numbers are expressed in

the binary number system.)

a) 1011 1100 b) 110 0000 ¢) 01111111

+ 0110 0110 + 010 1111 + 0000 0001
d) 1101 e) 1111 f)y 1011
0101 0010 1101
0110 0101 1110
+ 1001 + 1000 + 0111

2. Convert each of the above binary values to their decimal equiva-
lents to prove that your answers are correct.

3. What would the decimal value 7 look like in the unary number
system? Prove your answer.

4. Subtract the following binary values, and prove your results as in
Exercise 2. (Again, assume all the values here to be base 2 expres-
sions.)

a) 11111111 b) 1010 1010 e) 1101 1011
— 0000 0001 — 0101 0101 — 1011 1101

The Hexadecimal Number System

Binary computers are not the only beasts to employ number sys-
tems other than decimal. In the last section we looked at several systems,
the binary system used extensively in computer programming, for ex-
ample, while glancing at a few others just for fun such as the vigesimal
base 20 system.

Even though you will probably never use a number system such as
the vigesimal extensively, it’s instructive to realize that unlimited sys-
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tems for counting are possible, and that some very strange ones are in
use in the world even today. Remember, no matter how the quantity 255
is represented, in any number system it is still equal to 255 units of
whatever is being counted! Different number systems are only vehicles
for expressing the same things. If you understand this, you will be well
on your way to understanding the workings of binary computers. (It’s
the only way to get them to understand us!)

The base 20 vigesimal number system, by the way, was widely used
by primitive people who counted on both their fingers and toes. The
Mayas of Central America and the Aztecs of Mexico used this system.
The Aztec day, for example, was divided into 20 parts, and 8,000 war-
riors (20° or 20 x 20 x 20 = 8,000) made up a division of the Aztec
army, evidence that this famous and tragic civilization preferred to count
with more digits than we do.

There are modern leftovers from the vigesimal number system—
you have probably encountered and even used them. Abraham Lincoln
said, “Fourscore and seven years ago . ..” in his famous 1863 Gettys-
burg Address when “eighty-seven” (4 x 20 + 7) would have done just
as well mathematically if not poetically. The “score” is, of course, equal
to 20 and is an English word of probable Middle English (scor) or Old
Norse (skor) descent. The French also used the base 20 system in various
ways, dividing corps of police sergeants into groups of 220 men for one
example.

Here are the powers of the vigesimal number system believed to
have been used by the ancient Mayas.'

Power Maya Decimal Equivalent
1 hun 1
20 kal 20
202 bak 400
207 pic 8000
201 caleb 160,000
20° kinchel 3,200,000
208 alce 64,000,000

Another number system in wide use today is the hexadecimal sys-
tem, which will prove its value to you if you plan to do much program-
ming on binary computers. Hexadecimals are especially useful on pro-
cessors such as the 1802 that operate on binary numbers composed of
multiples of eight binary digits or bits.

Why hexadecimal? Literally from the Greek “hex” meaning “six,”
hexadecimal may be translated “six and ten,” although the word itself
seems to be a combination born of two cultural sources—Latin and
Greek. Unlike binary, which uses only two symbols, 0 and 1, hexadecimal

! From Number; the Language of Science by Tobias Dantzig, New York, Doubleday
& Co., 1954.
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numbers are composed of the normal 10 Arabics plus 6 more. You may
think, “But now I've got 16 instead of 10 symbols to keep track of!” In
part you are correct. Hexadecimal numbers are not the easiest things to
work with.

Some important advantages outweigh this apparent complexity of
the hexadecimal number system, however. The single most important
reason for using hexadecimals is the ease of converting them to and from
their binary equivalents. For this reason, hexadecimals serve program-
mers quite well. Numbers in binary form are easily recognized by com-
puters. But to a human, long strings of 0s and 1s may appear confusing
and meaningless.

Table 1-3 lists the decimal values 0 to 15 in three other number
systems. Note in particular that the binary values range from 0000 to
1111. In other words, every possible value that can be expressed in
binary using a space of four digits is included in the table. There are
exactly 16 different binary values including 0000. Look carefully at the
hexadecimal column. Six letters have been added to the 10 symbols of
the decimal number system for a total of 16 symbols. By using the values
in Table 1-3, any binary value may be converted into its equivalent hex-
adecimal.

Here are some examples of binary values and their hexadecimal
equivalents:

Binary 1011 1111 0000 0100  Binary 1000 1110

Hex B F 0 4 Hex 8 E
Binary 0001 1001 1010 0000  Binary 1111 1111
Hex 1 9 A 0 F F

To convert any length binary number into hexadecimal, first sep-
arate the binary number into groups of four digits, from right to left,
then convert each group using Table 1-3. The reason for doing this is
arbitrary. Computers only understand binary numbers. Representing
binaries in hexadecimal is strictly a convenience to the programmer.
Even though a computer may accept hexadecimal input, that input is
actually stored in binary form.

Converting hexadecimal to decimal may be done in the same man-
ner of converting from the binary (or other base) system. Base 16 raised
to successive powers is multiplied by each digit to obtain the correspond-
ing decimal value. For example:

C2B3), = C x 16* = 12 x 16°= 49,152
2x164= 2 x16= 512
Bx16t=11x%x 16= 176
3 x16° 3xXx 1=+ 3

49,843,

[
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Table 1-3.
Counting in Four Number Systems
Decimal Binary Hexadecimal Octal
(Base 10) (Base 2) (Base 16) (Base 8)
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 b
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11
10 1010 A 12
11 1011 B 13
12 1100 C 14
13 1101 D 15
14 1110 E 16
15 1111 F 17
Table 1-4

Hexadecimal/Decimal Conversion Table

Column 3 Column 2 Column 1 Column 0
(H* x 16%) (H x 16?) (H x 169 (H x 16%
HEX/DEC HEX/DEC HEX/DEC HEX/DEC

0= 0 0= 0 0= 0 0=10
1=409 1= 26 1= 16 1=1
2 = 8192 2= 512 2= 32 2 = 2
3 =12288 3= 768 3= 48 3 =3
4 =16384 4 =104 4 = 64 4 =4
5 =20480 5 =128 5 = 80 =5
6 =24516 6 =153 6 = 96 6 =6
7 =28612 T =179 7 =112 7 =1
8 =32,768 8 =2048 8 =128 8 =8
9 =3684 9 =230 9 =144 9 =9
A =40,960 A =2560 A =160 A=10
B=45056 B =2816 B=176 B =11
C=49152 C=3072 C=192 C =12
D=53248 D=3328 D=208 D=13
E=57,344 E=358 E =224 E=14
F=61,4400 F=380 F =240 F=15

*H, hex digit.
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If you are going to use hexadecimals extensively, you will probably
prefer using a powers of 16 table such as the one presented in Table 1-
4. This table gives each hexadecimal digit multiplied by 16 raised to the
powers of 0, 1, 2, and 3. A similar table is provided with 1802-based
computers such as the RCA Cosmac VIP, To convert from hexadecimal
to decimal, add up each decimal value appearing to the right of the hex
digit. To go from decimal to hexadecimal, start with the whole decimal
value and subtract the largest possible decimal values in the table, writ-
ing down their hexadecimal equivalents as you go.

To convert hex to decimal:

6B4D,, = 24,576 + 2,816 + 64 + 13 = 27,469,
To convert decimal to hexadecimal:

56,457 = (56,456 — 53,248) =(3,209 —3,072) =(187 —128) = (9 —9) = 0
D C 8 9
= DC8Y,,

Out of a greater love for the ancient Greeks than the Romans, I
will say “hex” from now on when I mean hexadecimal. Most computer
literature seems to agree with my cultural bias, and “hex number” has
become a common term among programmers.

Hex numbers are not new to programming, in fact the earliest hex
system used a different set of letters instead of the accepted A, B, C, D,
E, and F on top of the 10 Arabics. In the early 1960s, the lower case
letters t, e, d, h, f, and i rounded out the set. Other literature refers to
upper case U, V, W, X, Y, and Z for the additions. The lower-case hex
set was thought to be easily remembered for the following reason:

= ten
eleven
dozen
thirteen
= fourteen
= fifteen

o

t
e
d
h
f
i

Lucky for us this didn’t catch on! Imagine working with the value
hdtf, where t is less than f and f is greater than h even though their
alphabetic order suggests the opposite. It is far more reasonable that C
is greater than A and B is less than F.

One serious shortcoming of hex numbers is that people usually do
not print as well as typewriters and printing presses. The typewritten
D is certainly not a 0 and the B is decidedly not an 8. The author has
learned from nerve-racking first-hand experience to slow down when
hand-assembling a listing into hex values. I sometimes feel that U, V,
W, X, Y, and Z would not have been so bad after all because these
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symbols do not resemble any of the numerical digits. But you know what
they say: “When in Athens, do as the Athenians do!”

O O O

Many programmers use another number system, the octal or base
8 system, although its popularity in home computing seems to have
decreased severely. It probably has the advantage of unambiguity over
the hex digits, although it does not translate into eight-bit binary bytes
quite as nicely. The octal system uses the symbols 0, 1, 2, 3, 4, 5, 6, and
7 before repeating to 10. To convert from binary to octal, a binary num-
ber is split into groups of three digits, and charts similar to those given
here for hex may be used to find the equivalent octal and decimal values.

Exercises

1. Convert the following hexadecimal numbers to their binary equiv-
alents:
a) DEAF b) CAFE ¢) FACE d) BEAD

2. Convert the following binary values to their hexadecimal equiva-
lents:
a) 1100 0110 b) 1111 0101 ¢) 1010 1100 1110 0110
d) 1000 1001 1101 0010

3. Convert the following decimal values to hexadecimal:
a) 32,694 b) 60,060 ¢) 11,112 d) 40,692

4, Convert the following hex numbers to decimal:
a) 01F2 b) 29FF ¢) 846C d) F1F0

5. Perform the following math exercises using whatever means you
prefer to arrive at the answers. Express your answers in decimal,
hex, and binary.
a) 2,192,, + 1011, + 0BB4, =
b) 1110 0110, + 641C, + 89CC;, =
¢) CBCB,, + 82, + 1011 1110, + B9, =
d) B19C,, x 6A; =



2
O O O

Fundamentals of
Assembly Language

After presenting the rudiments of the binary number system, many
computer manuals proceed directly to an explanation of the CPU (central
processing unit) instruction set without giving the reader a chance to
take a breath. If this is your first attempt to learn machine language
programming, this may be too great a step for you to take.

Most computers contain the same basic operations in their instruc-
tion sets, however, and a general course on assembly language will give
you a solid base on which to build programming experience. Although
there are differences from processor to processor, and some are said to
be more powerful than others, you will find that they all may be pro-
grammed to do the same things in similar ways.

I sincerely hope that after learning 1802 machine code you will go
on and learn half a dozen others. This chapter is designed as a spring-
board toward that goal, although we will naturally give most attention
to the 1802’s capabilities.

Have you ever examined a listing in machine or assembly language
only to wonder if such a confusion could ever be understood by anyone
not of Einsteinian caliber? For example:

Machine Assembly
Line# Address Language Labels  Language Comments
01 0300 E2 ADD: SEX 2 ; X=2
02 0301 46 LDA R6 ; D < operand #1
03 0302 52 STR R2 ; Push
04 0303 46 LDA R6 ; D < operand #2
05 0304 F4 ADD ; D « op#1 + op#2
06 0305 AE PLO RE ; Answer
07 0306 D5 SEP Rb6 ; Return

15
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To a beginner, this may appear to be as unreadable as Old English
is to a college freshman.

Admittedly, a higher-level language such as BASIC or PASCAL
produces a program that is more readable than assembly language. When
trying to “take apart” a mysterious routine, this becomes especially
true. But when you are familiar with assembly mnemonics (pronounced
“nee-mon-icks”), a defined subroutine can be as easy to understand in
assembly as in any other language.

It is therefore most important to record accurately the function of
a machine language routine. Note that the assembler in Chapter 4 con-
tains comments after just about every instruction. In addition, each sub-
routine has a companion description that details input, output, calls to
other subs, what subs call this one, and the registers that are changed.

Reading a well-documented assembly language program may take
some study. Reading an undocumented program—even if you are famil-
iar with the machine code—may take forever. For your own sake, be
liberal with comments. Even though a particular sequence may seem of
obvious purpose today, that obvious meaning may become oblivious even
to the programmer tomorrow.

O O o

All machine languages may be broken into five general categories.
Some specialized computers may require additional categories, but all of
them contain instructions that fall into these five groups: (1) logic and
arithmetic operations, (2) program flow operations, (3) operations on
memory, (4) operations on internal registers and miscellaneous, and (5)
input/output.

The word register refers to a place inside the microprocessor. Reg-
isters may be thought of as individual compartments, each of a specified
length, and each capable of being manipulated or used in certain defined
ways. An accumulator or D register in the 1802 is a special register
affected by a large number of instructions. Its job is to serve as a col-
lecting point for all sorts of operations. In the 1802 microprocessor, the
eight-bit D register is the center of focus for nearly all operations.

The 1802 contains 16 other general-purpose registers, more than
most microprocessors. These registers are each capable of holding binary
values 16 bits long and are sometimes referred to as “scratch pad reg-
isters,” since they may serve as temporary holders for intermediate
values. The 1802 is still an eight-bit machine, however, since the D
register, its accumulator, may contain only a binary number that is no
more than eight bits long.

Other microprocessors contain a variety of register formats and
constructions. There are index registers (which the 1802 does not have),
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accumulator extensions, one-bit registers (the 1802 has some of these
plus some four-bit registers as well) for special functions, dedicated stack
and program counters, and more. But all registers are alike in one
sense—they are all capable of holding binary numbers of some length,
and those binary numbers may be affected in defined ways by machine
language instructions.

L7 | 6 [ 5 [ a8 211 o]
MSB LSB
Fig. 2-1. One eight-bit byte.

Figure 2-1 shows a block sectioned into eight parts, each part ca-
pable of representing a 1 or 0 to an eight-bit computer. The word “bit”
means “binary digit.” A single “bit,” therefore, refers to a single part
of the block in Fig. 2-1.

Note that the bits are numbered backward from right to left start-
ing with “0” not with “1.” Although there are eight bits, the one fur-
thest to the left is bit 7, and to mess things up further, bit 7 may also be
called “the eighth bit.” Yes, this is confusing, and for that reason this
book will use “bit 7” or “bit 3” according to Fig. 2-1 rather than re-
ferring to the ambiguous “fourth bit.”

There is a good reason for thinking of the first item of a set as 0
rather than 1, however. The convention goes along with the way com-
puters tend to view the positions of lists of numbers. It’s a convention
that needs to be memorized and consciously applied.

Also note that under the block in Fig. 2-1 are the abbreviations
“MSB” and “LSB.” These mean “most significant bit” and “least sig-
nificant bit” and are nicknames used extensively in computer literature.
The LSB is always to the extreme right and the MSB to the extreme
left. You will also see “MSD” and “LSD” occasionally, which are ab-
breviations for the most and least significant “digits.”

Because of the way registers are constructed in the 1802 micro-
processor, it is important to understand the least significant parts to be
on the right, the most significant parts on the left. This goes hand in
hand with the positional number systems we have discussed: the most
significant parts of numbers having the highest values are to the left,
and the least significant having the lowest values are to the right.

The eight binary digits or bits represented in Fig. 2-1 are commonly
given the name byte, and in this book, one byte will always equal eight
bits. (This is a rather common convention in microcomputing, but a byte
does not always equal eight bits in much of the published literature.)
Some books also refer to computer “words,” but, since a “word” is
even more loosely defined than a “byte,” we will refrain from using it
as a label for binary numbers. In addition, to make things come out right
for eight-bit computers, leading zeros are usually written in front of
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binary numbers so that all numbers come out to even multiples of eight-
bit bytes.

Chapter 3 contains a detailed description of each of the 1802’s
instructions. If you thumb through that section, you will see each in-
struection listed in various forms. The blocked-in portions contain two of
the forms we will explain here: the “op code” and the “mnemonic.”

Op codes—“operation codes”—are the actual binary values that
the computer understands as instructions. Mnemonics are descriptions
of that instruction’s action. Because mnemonics may be pronounced as
words (e.g., LDN = “Load via N”), they are easier for a programmer
to work with than the absolute (meaning “pure” or “actual”) hex codes.
Strictly speaking, the op codes form the “machine language,” while the
mnemonics form the “assembly language.” The distinction is minor, and
the terms are interchanged frequently, however. Some literature views
assembly language as one of the higher levels above machine code, even
though assembly is just another representation of the same programming
level—machine language.

Only the op codes are stored in a computer’s memory. The instruc-
tions are arranged by the programmer to perform whatever function is
desired. Normal program flow will automatically cause one instruction
after another to be executed in a direct line unless that flow is altered
by an instruction. All programming languages assume a normal auto-
matie program flow in a forward direction, which may be purposely al-
tered, but when altered will again continue in the forward direction au-
tomatically.

The computer needs to know which instruction to execute next. A
register is usually designated as the “program counter” (PC), which
tells the computer where to obtain the next op code for execution. Many
computers have a dedicated program counter—a register that may not
be used for any other purpose except to control program flow. The 1802
allows any of its 16 general-purpose registers to be used as the program
counter, and one of these must in fact be designated the PC at all times.
Normally, R3 is used, but you are not bound to any restrictions—any
1802 register may become the PC by executing a single instruction de-
signed for this purpose (the SEP RN instruction).

The program counter contains a 16-bit address that numerically
identifies a location in memory. These addresses are simply binary num-
bers corresponding to physical locations, like individual post office boxes,
in memory. Each location may contain an eight-bit binary value and that
value may be a piece of data or it may be a computer instruction. Both
data and instruction codes may occupy the same memory locations. Most
eight-bit microprocessors including the 1802 may address (meaning “to
point” or “to aim” toward) up to 65,5636 different eight-bit memory
locations corresponding to each of the hex values from 0000 to FFFF.
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Usually this maximum amount of memory is referred to as “64K.,”
although for what purpose remains a mystery (probably its divisibility by
8). When you have that much memory, a thousand or two bytes one way
or another won’t make much difference. But, knock on silicon, don’t ever
say such a thing aloud while programming. Algorithms can develop insa-
tiable appetites for memory space given half a chance.

A typical tendency for beginners is to confuse the similarity of mem-
ory addresses and data. The fact that data may be an address or an ad-
dress may be manipulated as data might appear particularly unlikely.
But it’s not. Addresses and data are both binary numbers capable of
being manipulated by computer programs at the will (and sometimes
against the will) of the programmer. When a register contains the ad-
dress of some memory location, it holds a 16-bit value corresponding to a
physical location in memory where some eight-bit value is stored. How-
ever, the address is only a means of finding that storage location—the
actual address does not exist as a number in memory that can be ob-
tained.

Memory circuits are usually wired to accept this 16-bit number,
thereby opening channels directly to the desired eight-bit byte stored at
the designated location. The action is the same for all memory locations
allowing direct access to any position in memory without having to count
or skip over any others. For this reason, memory is said to be “random
access memory” (RAM), although the term has come to mean memory
that retains values only so long as power is applied (i.e., it is “volatile”).

Other forms of memory, read-only memory (ROM), programmable
read-only memory (PROM), ete., also allow random access. In fact all
types of computer memory may be addressed in the same way by spec-
ifying some 16-bit value intended as a pointer to a unique memory lo-
cation. And any or all locations may be designated by the programmer
to contain whatever is needed—data or instructions.

(One type of memory not usually seen in the market is the RUM
or read usually memory. The author has a few of these unusual chips,
which take their name as a function of their normally unsteady state.
However, since this is a software manual, we will refrain from discussing
much more of the hard stuff in the coming pages.)

Many programmers will choose assembly over a higher-level in-
terpretive language for various reasons. They like the speed of assembly,
the efficiency of memory use, and the freedom to manipulate data un-
bound by restrictions usually found with interpreters. Some program-
mers simply enjoy the challenge of working in a machine’s native lin-
guistics.

This book does not take a stand or make pro or con comparisons
between assembly language programming and programming in the
higher levels such as BASIC. It has been the author’s experience that
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the language should fit the application, and you the programmer have to
decide which to use. I hope this chapter will help you digest the apparent
complexity of assembly language, which does not have to be as difficult
to use as it may seem. Rather than urge you to join the “which is best”
controversy, this chapter will attempt only to provide a means for the
programmer to make an intelligent choice of programming languages.

Here then are the fundamentals of machine language as they per-
tain to the 1802 microprocessor.
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Arithmetic and Logic Operations

All computers are capable of performing arithmetic in binary. Usu-
ally microprocessors such as the 1802 have only limited arithmetic in-
structions—they cannot directly multiply or divide—but these limitations
should not be viewed as detriments. Even if all a computer can do is add,
and they all can do that, even the most complex mathematics may be
programmed.

Arithmetic operations take place in what is usually called the ALU
or arithmetic logic unit, actually another register inside the micropro-
cessor. The ALU in the 1802 processor is eight bits long, and, while all
arithmetic is performed there, it is not available for direct use by the
programmer.,

Following an add or a subtract instruction—the only math we can
perform directly with the 1802—the answer will always appear in the D
register. Two binary bytes may be added or subtracted. One of these
bytes is first placed in the D register and another value is then added or
subtracted. The 1802 has the advantage of being able to subtract the
contents of the D register from another value or to subtract that value
Jrom the D register. Most microprocessors can only subtract in one di-
rection—that is, a value is usually subtracted from the one in the accu-
mulator.

Just how and where that second operand is specified and how the
first gets into the D register are subjects for later. For now, you only
need to understand that in order to add or subtract two values: (1) the
D register (accumulator) is loaded with one of the operands; (2) the in-
struction to add or subtract is performed; and (3) the answer appears in
the D register (destroying, by the way, the original operand that was
there!).

At this point, the program would presumably do something with
the answer in the D register. It may decide to put it somewhere for stor-
ing until that value is needed. It may save it in part of a scratch pad
register. Or it may use the answer as an intermediate value and add still
other values to it. But at each step along the way, the computer is capable
only of directly adding or subtracting two eight-bit bytes with the result
that the operation appears in the D register.

Addition

One problem may easily occur when you are adding. For example,
using the techniques presented in Chapter 1, add the following two bi-
nary values:
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Binary Hex equivalent
1111 1111 FF operand 1
+ 0000 0001 + 01 operand 2
overflow- 1/0000 0000 100, D register
EXAMPLE 2-1

Adding 1 to the largest possible eight-bit value (255 decimal) will
result in a binary number that is nine digits long, too large to fit in the
D register of our computer. A carry of 1is generated out of the eight-bit
capacity of the accumulator, which, if it were nine bits long, would con-
tain the binary number 1 0000 0000.

Before we see how the computer deals with this situation, try add-
ing the following two values:

Binary Hex equivalent
1111 1111 FF operand 1
+ 1111 1111 + FF operand 2
overflow- 1/1111 1110 1FE, D register
EXAMPLE 2-2

These examples show a very important fact about adding two bi-
nary values together. Example 2-1 shows the addition of one to the larg-
est eight-bit binary value, and Example 2-2 shows the addition of the
two largest possible eight-bit values. In each case, there was an overflow
of one and only one bit out of the eight-bit capacity of the accumulator.
We may conclude that if an overflow results from the addition of two
binary values, that overflow will never be greater than one bit.

All computers have a way of dealing with this possible overflow
bit. In the 1802 microprocessor, a one-bit register called the DF, or Data
Flag, register will contain the result of the overflow following an addi-
tion. If there was an overflow, DF will be set equal to 1. If there was no
overflow, DF will be set equal to 0. To summarize, following addition
(1) DF = 1 means overflow occurred and (2) DF = 0 means no overflow
occurred.

@ther microprocessors may call the DF register by other names.
You may call it by several choice titles if it does not perform in the way
you think it should, although the language referred to here is of a higher
level than that to be presented in the following pages.

Some processors will refer to the DF as the carry flag or carry bit
or just as the overflow bit or toggle. No matter, its function is identical,
and regardless of its name the result is the same in all processors.

Subtraction

Subtraction is another matter. Earlier, we promised an easy way
to subtract two binary values by simply adding them together. A simple
decimal example will help explain the method:

22 — 10) = 12 =[22 + (-10)] = 12
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(Read = as “is equivalent to.”) The example shows only that add-
ing a negative value is the same as subtracting its absolute (or positive)
equivalent value. The same is true in binary. When a number is to be
subtracted, the computer needs only to add its negative equivalent.

An easy way to arrive at a binary negative equivalent is to take its
“2s complement.” Without even knowing what this is or why it works,
you may easily construct the 2s complement of any value by following
these simple directions.

1. Complement every bit. That is, if a bit is a one make it a zero and
if the original is a zero, make it a one.
2. Add one to the result, ignoring overflow if it occurs.

To subtract any binary value B from any binary value A, simply
add the 2s complement of B to A. After this addition, the overflow bit
(DF' in the 1802) indicates if a borrow was needed. If DF is equal to 0,
then B was greater than A (before taking the 2s complement). If DF is
equal to 1, then everything is OK; B was less than or equal to A and no
borrow was needed. If DF is equal to 0 and B was greater than A, then
the answer is in 2s complement (negative) form. In that case, taking the
2s complement of the answer will produce a positive value of the right
absolute quantity.

Now that you know what a 2s complement is, we will proceed to
describe how and why it works. If any of these processes seems strange,
take a moment to work out a few examples on paper until you understand
what is happening. You should not expect to grasp everything at a single
reading, so don’t be discouraged if the going is slow. No one has learned
machine language programming or the ins and outs of binary overnight.

To further understand what happens with 2s complement subtrac-
tion, consider the following subtraction in binary. Pretend that there is
a 1 bit to the left of the minuend:

Minuend (1) 0000 0000 operand 1
Subtrahend — 0000 0001 operand 2

(0 1111 1111 D register

We seem to have come full circle here, ending with the largest
possible eight-bit value (255 decimal) in the D register. But if we choose
to let that value equal —1, then we may choose to view the answer as
correct. Just how we can represent negative numbers consistently in
binary without such contradictions will be covered a little later. By using
your basic binary math skills developed in Chapter 1, you should be able
to verify that the result above is correct provided you make the as-
sumption that a 1 bit appears to the left of the minuend. If we consider
the answer to be nine bits long, then adding it back to the subtrahend
should produce the minuend and this proves to be so. Try this on paper
if you’re not sure.
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How can this subtraction be accomplished by adding? Easy. What
value added to 0000 0000 will produce the same result as above?

(1) 0000 0000 operand 1
+ 1111 1111 operand 2

(0) 1111 1111 D register

Notice that the imaginary ninth bit to the left of the answer is the
same in both examples. In fact, each answer is identical in all respects!
If we let the DF register represent the imaginary bits to the left of
operand 1 and the answer, DF’s value conforms to the rulés given for
addition. Since there was no overflow following the add, DF equals 0,
even though it was set to equal 1 before the addition was performed. In
fact, its previous value has absolutely no bearing on the result. Even if
DF equaled 0 before adding, the answer will be the same.

2s Complement Revealed

The only difference in the above examples is operand 2. In the first
example, operand 2 equals 0000 0001 and in the second it equals
1111 1111, If we can find a relationship between 0000 0001 and 1111 1111,
we will have found a way to subtract two binary values using addition.
This relationship is called the “2s complement” and is easily formed as
we said before.

For example, take again the value of .operand 2 in the first sub-
traction above:

0000 0001 operand 2
1111 1110 (1) Complement
+ 0000 0001 (2) Add 1

1111 1111 (3) 2s complement of 0000 0001

All binary 2s complements may be switched back and forth, the two
values actually being the 2s complements of each other:

1111 1111 2s complement of 0000 0001
0000 0000 (1) Complement
+ 0000 0001 (2) Add 1

0000 0001 (3) 2s complement of 1111 1111
Here are some more examples of binary numbers and their 2s com-
plements.
1011 1110 1100 0110 1010 0101 Original values

0100 0001 0011 1001 0101 1010 (1) Complement
+ 0000 0001 0000 0001 0000 0001  (2) Add 1

0100 0010 0011 1010 0101 1011  (3) 2s complements

The 1802 microprocessor automatically adds the 2s complement of
the subtrahend to the minuend in order to obtain the answer to a sub-
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traction. Usually this is true of most binary processors, but even if all
a processor could do was add, you could subtract values by adding the
2s complements of the subtrahends. Of course, you would need a way to
first complement the number, but this is easily accomplished in most
microprocessors.

Below are some sample binary subtractions demonstrating the use
of 2s complement addition to arrive at the answers. Since we have al-
ready defined what happens to the DF register upon an overflow, the
purpose of these examples is to observe the condition of DF following
the operation.

Subtraction by 2s Complement Addition

Step Problem 1 Problem 2 Problem 3
(1) 0111 1001 0010 1101 1010 0101 Minuends
— 0011 1010 — 1011 0110 — 1010 0101 Subtrahends
(2) 1100 0101 0100 1001 0101 1010 (1) Complement
+ 0000 0001 + 0000 0001 + 0000 0001 (2) Add 1
1100 0110 0100 1010 0101 1011 (3) 2s Complement
(3) 1100 0110 0100 1010 0101 1011  2s Complement
+ 0111 1001 + 0010 1101 + 1010 0101 + Minuend
(1) 0011 1111 (0) 0111 0111 (1) 0000 0000 Answers
DF D DF D DF D

Three conditions have been represented above with the operations
carried out in three steps. Step (1) states the problem. Step (2) finds the
2s complement of each subtrahend from Step (1). Step (3) adds each min-
uend to the 2s complement subtrahend from Step (2). The result of DF
following the entire process is in parentheses to the left of the answers,
which are assumed to be in the D register. The previous value of DF is
unimportant and may be left undefined, since DF is always changed by
an addition and its value is always 0 or 1 depending on whether there
was an overflow (1) or not (0).

Consider Problem 3 first. Here we are attempting to subtract iden-
tical operands. Naturally, the result of this subtraction would have to be
zero, so we may conclude that no borrow is needed to complete the
operation. DF is equal to 1 following the 2s complement addition; there-
fore, it follows that DF equals 1 signals no borrow taking place.

Problem 1 demonstrates the condition minuend > subtrahend and
Problem 2 demonstrates minuend < subtrahend. In Problem 1, we would
expect the answer to be positive, since no borrow is needed to subtract
a lesser value from a greater. DF is equal to 1 following the 2s comple-
ment addition. This is consistent with Problem 3—no borrow is needed
in either case.

Problem 2 attempts a subtraction of a greater value from a lesser.
The answer would have to be negative, of course, and you can see that
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in this case DF is equal to 0 following the 2s complement addition. This
would seem to be logical and perfectly suited to our needs. However, is
the answer in the D register correct? Let’s convert to decimal and see.

Binary
0010 1101 Minuend 45
— 1011 0110 Subtrahend — 182
2s complement 0111 0111 Answer — 137

But 0111 0111, the answer in binary to Problem 2, is equal to 119
in decimal, and the decimal subtraction indicates that the answer should
be —137. Something is not right!

Let’s try taking the 2s complement of the binary answer (119 dec-
imal) in Problem 2:

Answer Problem 2 0111 0111 = 119,,

(1) Complement 1000 1000
(2) Add 1 + 0000 0001
3 1000 1001 = 137y,

We have apparently obtained a positive value when we wanted a
negative one, but the number 137 is correct. Since DF was equal to 0
only when the answer was negative, however, its value may be used to
indicate the sign of the answer. If the answer is negative, its absolute
value may be obtained by taking the 2s complement! We may now sum-
marize the rules for subtraction assuming that the 2s complement of the
subtrahend has been added to the minuend (automatic in most mieropro-
Cessors).

Following Subtraction

DF = 1 — Answer positive—no borrow needed (minuend = subtrahend)

* DF = 0 — Answer negative—borrow needed (minuend < subtrahend)

* If DF = 0, the answer is in “2s complement form” and the corresponding
positive value may be obtained by 2s complementing the negative result.

When a programmer wants to be able to express negative numbers
in binary, a decision must be made about the sign of the number—where
it will be kept and how it will be represented.

We have just seen how the overflow flag, the one-bit DF register
in the 1802, may be used to indicate the sign of a number. There is a
more convenient (usually) way.

Instead of the overflow flag, most computer software routines des-
ignate the MSB of a binary value to be used as the sign bit. In an eight-
bit byte, this would be bit 7, leaving bits 0 to 6 free to contain binary
values. The sign now becomes an integral part of each byte, but since
we have used up one precious bit, values are now limited to a seven-bit
binary range.
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Common convention is to let a 1 in bit 7 indicate a negative number.
If bit 7 is 0, then the value is positive.

At first, this may seem overly complex. How does one keep the
sign bit from interfering with additions and subtractions? Happily, when
we are using 2s complement subtraction, the sign bit (if we choose to use
bit 7 as the sign) will always come out right without the programmer’s
having to know, worry, or figure what the sign is supposed to be! Nothing
could be more pleasant.

To prove that this is in fact the case, take again the first subtraction
example presented in this section. Subtracting binary 1 from 0 resulted
in the eight-bit answer 1111 1111. Note that bit 7 is a 1, indicating to us
that the answer is negative. While we remember that the answer is
negative (e.g., outputting a minus sign to the printer), taking the 2s
complement of 1111 1111 gives us the absolute value of the negative
number, in this case 1, which could also then be printed. This works for
all negative binary values represented in 2s complement form.

When bit 7 is 0, the number is positive. To be consistent, we must
assume the value zero to be positive. For this reason, it is possible to
specify one additional negative binary number for which there is no pos-
itive equivalent. The following example shows the range of binary values
when bit 7 is designated to be the sign of the number.

Binary Decimal
1111 1111 to 1000 0000 = —1to-128
0000 0000 to 0111 1111 = 0 to +127

Sign bit Sign bit
There are exactly 128 positive and 128 negative numbers capable
of being represented in a single byte. But because one of the positive

values is zero, it is not possible to represent the positive number 128 in
eight bits.

Double Trouble

If you feel that a range of —128 to +127 decimal is limited, you are
correct. Except perhaps to hold the score of a simple computer game or
some other limited use, many programs will require a much greater
range.

The arithmetic processes described in this section may be extended
by using a process known as “double precision.” Although we will stop
with double precision, there is no reason to prevent further expansion
to triple or higher precision using the techniques to be explained.

With double precision arithmetic, two adjacent bytes are used to
represent values. Since the computer is still capable of operating on only
single eight-bit bytes at a time, now each value will be manipulated one
half at a time. More complicated, but not too much so.
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Again it is common to designate the MSB of the first byte as the
sign of the whole number. If we view the two bytes end to end as a single
unit, this sign bit would occupy bit position 15 with the LiSB of the second
byte at position 0.

By using double precision with signed binary values, 15 remaining
bits of the two bytes may contain values. The range for double precision
numbers is similar to the range presented for signed single (one byte)
precision arithmetic:

Binary Decimal
1111 1111 1111 1111 to 1000 0000 0000 0000 = -1 to —32,768
0000 0000 0000 0000 to 0111 1111 1111 1111 = 0 to +32,767
i |
Sign bit Sign bit

Again there is one absolute value more on the negative side than
on the positive. Viewing zero as a positive number accounts for the dis-
crepancy. The above range, by the way, is that used in many popular
integer BASIC interpreters. Note that only bit 15 of the byte pair indi-
cates the sign of the entire value contained in the remaining bits.

Now that we have decided on the format for representing larger
numbers, the means must be developed for using them. The algorithms
or methods to be deseribed will demonstrate an approach to working with
dual bytes as if they formed a single unit. In other words, we want re-
sults identical to those that could be obtained on a computer with a 16-bit
accumulator.

Remember that following an addition or subtraction, the DF over-
flow register indicates if a carry or a borrow occurred during the opera-
tion. This action of the overflow register allows the double precision
bytes to be linked together as one unit.

Most computers, the 1802 included, have instructions for adding
and subtracting with or without taking the value of overflow into con-
sideration. The process is automatic.

To add two binary double precision numbers together, first add the
two lower bytes without consideration for the carry value in DF. Then
add the two higher bytes with the value of DF, which may be 1 or 0
depending on the result of the first addition. Note that the programmer
(or the program) never has to know what the value of DF is. The follow-
ing example demonstrates a double precision add.

1011 1010 0101 1000 = BAS58
+ 1100 0110 1100 1110 = +C6CE

1/1000 0001 0010 0110 = 8126 (DF = 1 = overflow)
DF = (1) oY)

To accomplish the above in machine language, the addition would
be carried out in the following steps (hex notation used):
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Step (1) 58 + CE=26 (DF =1 signals overflow)
Step (2) BA + C6 + (DF) = 81 (DF' =1 signals overflow)

For precision addition of any length, the first addition of the least
significant bytes ignores the value of DF. In the 1802, the instructions
ADD and ADI could be used to accomplish Step 1.

To complete the addition, the high bytes to the left are added, plus
the possible carry from the previous operation. The 1802 instructions
used could be ADC or ADCI.

The final value of DF indicates whether the entire answer—over
the length of precision being used—overflowed exactly as if only single
bytes had been added together.

O O O

Double precision subtraction is practically a reverse of addition.
The direction is the same, starting by subtracting the low bytes without
regard for the value of DF, then proceeding to subtract high bytes with
the possible borrow in DF from the previous operation. For example:

1100 1000 0111 0010 = (872
— 0101 0100 1010 0001 —54A1

(Add 2s compliment)
+ 1010 1011 0101 1111

1/0111 0011 1101 0001 73B1
DF = (1) ©

The above subtraction in a machine language program would be
accomplished by using the following steps. The 2s complement addition
is automatic with all subtraction instructions and is completely transpar-
ent to the programmer.

Step (1) 72 — Al = Bl
(DF = 0 signal a borrow)
Step (2) C8 —54 —DF =173
(DF = 1 signals no borrow—answer
is positive)

Step (1) subtracts the two low bytes, ignoring the value of DF. The
1802 accomplishes this with the instructions SD, SDI, SM, and SMI. DF
indicates if a borrow was needed to complete the subtraction.

Step (2) completes the double precision subtraction by subtracting
the two high bytes while subtracting the opposite value of DF (indicated
by the line above DF, which means “not DF”). The 1802 instructions
that will accomplish this are SDB, SDBI, SMB, and SMBI.

The final value of DF indicates if a borrow was needed over the
entire length of the answer. Since 2s complement notation is used, DF
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may indicate whether the answer is positive or negative. The sign bit in
the most significant position may be used to represent positive and neg-
ative values as previously explained.

In both cases, higher precision may extend the process and the
possible range of the answer. The action is similar to the workings of a
mechanical counter with a series of numbered wheels each with a metal
tab next to the 0 digit. As each wheel completes a revolution, the wheel
to the left is advanced one digit by the tab on the wheel to its right.
Unlimited numbers of wheels could be strung together to expand the
range of the counter.

The analogy isn’t perfect—computers don’t normally count to add.
But the idea should help explain the concept of extended precision arith-
metic. Bytes are linked together—an unlimited number is theoretically
possible—by the action of the overflow register. Any size value of prac-
tical use could be represented in this fashion.

O O O

Floating point scientific notation is usually used to express very
large (or very small) numbers. We will not discuss this here, but the
process is a not too simple one of breaking numbers into a normalized
integer part and an exponent (in binary). For most applications other
than business or exacting scientific data processing, the extended pre-
cision techniques using integer (whole number) values will suit.

Logic Operations

Boolean algebra is a branch of mathematics that deals with very
special methods of combining entities. Inside a microprocessor, the Boo-
lean operators “AND,” “OR,” and “EXCLUSIVE OR (XOR)” are
used to combine binary numbers with results that could not easily be
duplicated without these special operations.

Table 2-1.
Truth Tables
1 2 3

“AND” “OR” “XOR”*
XYZ XY7Z XYZ
000 000 000
010 011 011
100 101 101
1 11 1.3 1 110

* Exelusive OR.
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Table 2-1 lists three truth tables for the three logic operations. A
truth table for our purposes is defined as a bit-by-bit chart of the results
of a logic operation. X and Y are combined logically to produce the result
Z (Table 2-1). Large binary values may be logically combined on a bit-
by-bit basis. There are never any carries or overflows generated by the
use of the logic operators, and adjacent bits never have any effect on
their neighbors.

Following are definitions for two logic operations, the logical AND
and the logical OR.

1. AND—a 1 will be produced if and only if both bits are equal to 1.
2. OR—a 1 will be produced if either or both bits are equal to 1.

The operation “EXCLUSIVE OR,” which is normally written
“XOR,” is a special case of the logical “OR.” It may be defined as
follows:

3. XOR—a 1 will be produced only if one of the two bits is equal
to 1.

Another way to define XOR is to say that zero will result if both
of the inputs are equal (0 XOR 0 = 0; 1 XOR 1 = 0). Note in Table 2-1
that 0 results during an XOR operation when both inputs are equal to
0 and also when they are both equal to 1. Thus, the XOR is useful to
test if a number is equal to some fixed value. If the result of XORing
the two numbers is 0, then they are the same. If the answer is not 0,
then the two inputs were different somehow.

The examples below demonstrate a few binary values and the re-
sults of the three logic operators. Remember, the combining is done on
a bit-by-bit basis. Adjacent bit values have no bearing on the final out-
come.

1110 0110 1110 0110 1110 0110

1010 1001 1010 1001 1010 1001

1010 0000 1110 1111 0100 1111
AND OR XOR

The three examples above combine the same two binary numbers
and show the different results of the three logic operators. In a computer,
these operations are useful in ways illustrated by the next three exam-
ples.

1110 0110 1110 0000 1110 0110

0000 1111 0000 0110 1110 0110

0000 0110 1110 0110 0000 0000
AND OR XOR

The AND operation above demonstrates an important and useful
computer operation, “masking.” By noting that the digit 0 ANDed with
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anything produces 0, if you wish to eliminate any portion of a binary
value, you only need to AND that portion with Os. To retain a part of a
binary number, even to mask all but a particular bit, AND the portion
you want to keep with 1s. The portion that is retained following the AND
is said to have “passed through,” and the portion that was stripped off
is said to have been “masked.”

The OR operation performs the opposite function. Since any value
ORed with a 0 will equal that value, the logical OR may be used to
combine portions of binary values into single bytes. Likewise, any value
ORed with a 1 will equal a 1. When such values will later be separated,
perhaps with a logical AND command, the byte is said to be “packed,”
referring to the fact that it contains more than one distinct value. The
OR example shows the results of packing two bytes into one. Note that
the individual four-bit values have not been changed by the operation
but they now have been combined into a single byte.

The XOR operation permits a fast and simple way to test whether
a byte of unknown value is equal to some fixed amount. When two equal
binary numbers are XORed together, the result will be equal to 0.

Another use of the XOR is demonstrated below.

Binary Hex
Original — 1110 0110 E6
1111 1111 FF
——————— XOR
Answer — 0001 1001 19
XOR

By XORing any binary number with hex FF, equal to binary
1111 1111, we have effectively and efficiently complemented the original
value! Wherever there was a 1, there now appears a 0, and all Os in the
original are now equal to 1s. Adding 1 to the result would give the 2s
complement of the original value, which, you will recall, may be used
when two numbers are to be subtracted. The XOR function may be useful
in computers not having a subtract command, although sometimes these
same machines will contain a 2s complement instruction that automati-
cally complements a number and adds 1 to it.

When a negative number is in 2s complement form, the above tech-
nique may be used to find the absolute value of that number.

The 1802 instructions that perform these three logical operations
are AND, ANI, OR, ORI, XOR, and XRI. In all cases the result of the
operation appears in the D register and DF is not affected.

Shifting

I have never seen a shiftless computer, although I wonder if some
of those Las Vegas “computers,” the one-armed kind, may not fit the
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bill. Although the process of shifting is not truly a logic operation, it is
included here. Shifting may be viewed as an arithmetic process providing
a fast way to multiply and divide a binary value by powers of 2.

Shifting is exactly what it sounds like. When a binary number is
shifted to the right, each bit moves one position in that direction. Shifting
left produces the opposite expected result. Although there are variations
from instruction set to instruction set, most microprocessors (including
the 1802) contain forms of the following shifts.

1. Shift right

2. Shift left

3. Shift right with carry
4. Shift left with carry

When a number is shifted to the right, the bit that originally existed
furthest to the right leaves the accumulator and enters the overflow bit,
the DF register in the 1802. On the other end, a 0 is shifted into the
accumulator. Here is a graphic representation of a shift right.

Before [1]o]1]a]1Jo]o1]

MSB D LSB DF
After 0 [o]1]o]1]a]1]0T0]
l } D l DF

SHIFT RIGHT

The X in the “before” DF box indicates that its previous value is
unimportant. Following the shift right, the LSB of the byte in the D
register is in DF and a 0 appears as the new MSB in D. The 1802
instruction performing this operation is the SHR command.

A shift-with-carry operation works in the exact same way with one
important difference. The previous value of DF enters the D register as
the new MSB, while at the same time the old LSB leaves D to enter DF.
This resembles a circular operation that, if repeated nine times, would
result in every bit of the byte having passed through DF only to return
to their exact previous positions.

Here is an example of a shift right with carry performed by the
1802 instruction SHRC or its duplicate mnemonic RSHR.

Before Il|011|111[0|0}1|
MSB D LSB DF
After 0 [1]1]of1Ta[1]o]o]——[1]

t P |

SHIFT-RIGHT-WITH-CARRY
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It is important to realize that the value of DF is considered during
a shift-with-carry and that its previous value will enter the accumulator
from the opposite end of the shift direction. Shifting to the left is the
opposite of the shifts to the right. Here are the same examples shifted
left and shifted-left-with-carry from DF.

Before [1|0|1l1|1]0|0|ﬂ

MSB D LSB DF
After [o[1]1]1JoJo1]0o] ~—— o[1]
| }

SHIFT LEFT
Before [1Jo]1a]1]ofo]1]
MSB LSB DF

After lo[1]1]1]olo]1]1]
|

3

SHIFT-LEFT-WITH-CARRY

In the case of shift lefts, the MSB moves into the DF register on
a simple shift left and a 0 is shifted into D from the right to become the
new LSB. During a shift-left-with-carry, the old DF value is shifted into
D as the new LSB, while the old MSB of D moves into DF at the same
time. The corresponding 1802 instructions are SHL and SHLC with its
duplicate mnemonic RSHL.

O O O

Shifting has various uses in computer programming but generally
is employed to do one of the following things.

Bit Test by Shift

Individual bits may be shifted into the DF register for testing. In
upcoming sections, you will learn certain 1802 instructions that cause
program flow to be altered based on the value of DF. These instructions
could direct the program operation depending on the individual bit values
within bytes tested by shifting.

Unpacking and Packing by Shifting

Remember the logical OR function used in some cases to allow small
individual values to be packed into one byte? When many values are
needed to be stored, packing helps cut down on storage space require-
ments. Shifting is frequently used to move the values into position for
packing, then to restore the original values following unpacking.
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Arithmetic Shifts

Shifting any byte once to the left is the same as multiplying that
byte by 2. Shifting twice is identical to 2 X 2; three shifts would produce
2 X 2 x 2. You can prove this to yourself by adding any binary value to
itself. The result, basically a multiplication by 2, is the same as a single
shift to the left.

Similarly, shifting to the right effectively divides any binary value
by powers of 2. One right shift divides by 2; two right shifts divides by
2 % 2, ete. The proof of this is simply the converse of the multiplication
above.

Be especially careful of overflow when multiplying and dividing by
this method. Remember, bits leave the D register in the direction you
are shifting. Even though it would be correct to assume eight shift lefts
to be equivalent to a binary value times 28, if you do not do something
with the bits that are shifted out, you will end with 0, and not what you
expected. As in adding and subtracting large values, all processors have
ways of dealing with this problem, and double-precision shifts may be
used to “catch” bits as they leave D, shifting them from DF into another
byte. .

Other uses for shifting are discovered frequently, and you will see
the instructions used in the most unlikely places. I remember a short
program I once came across that calculated the sine of an angle almost
purely by multiple shifting! Clearly, a shiftless computer would not have
the power of one with these important instructions.

WIS ) =

The appendix subroutine library of this book contains several ex-
amples of double-precision arithmetic and shifting routines. For a com-
plete understanding of the processes in the preceding sections, you
should study the programs carefully. The best way is to follow each step
of a routine by writing on paper what the values in the registers and in
D are before and after instructions are executed. This “walk through”
will be more instructive than simply running the program on a computer
and viewing the results.

Program Flow Operations

In terms of programming potential, instructions that alter the flow
of a program lend the most power to a binary brew.

Two types of jump or branch instructions exist in all computers:
conditional and unconditional. The 1802 names its jump instructions
“branches,” but the actions are similar to jump commands on other
microprocessors. In addition to branching, the 1802 contains a special
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set of skip instructions that allow a rather limited relative type of jump
without having to specify a destination address.

Some computers allow relative branching plus or minus a certain
number of bytes away from the branch origin. Unfortunately, the 1802
does not have this feature and it is always necessary, except for the skip
instruction, to specify an address to which the branch is to occur. (Rel-
ative branchings may be simulated on the 1802 but at a high expense of
memory space.)

If you have had experience programming in a high-level language
such as BASIC, you have probably seen GOTO constructions that cause
a program’s execution to take a course dependent on various conditions,
values of variables, keys pressed, ete. If you have attempted to follow
the paths of a complex GOTO-ridden program, you will appreciate the
prudence of using jumps sparingly.

Although it is usually impractical (possibly impossible) to write
machine language programs without any jumps or branches, it is wise to
use these powerful instructions only as necessary. Better that a program
be constructed modularly using subroutines for each cog of the clock than
that the parts be strung together with branches. Every time you use a
branch instruction ask yourself if it is absolutely needed. If the answer
is no, get rid of the branch. When debugging time rolls around—and it
will, it will—you will appreciate the simplicity of a straightforward pro-
gram structure.

Unconditional branches direct program flow to a specified address
regardless of any values, conditions, or actions occurring or existing.
When the branch instruction is executed, the branch to the specified
address will always be taken.

Conditional branches allow the program to make a decision on
whether to take the branch or not. Each conditional branch instruction
is strictly defined to be dependent on a specific value or condition in a
specific way. For example, one of the 1802’s conditional branch instruc-
tions (BNZ) causes the branch to be taken only if the value in the D
register is not equal to zero.

When a conditional branch decision point is reached in the program,
an evaluation is made by the computer whether to take the branch or
not. If the decision is to branch, then the jump is taken exactly as if the
branch instruction had been an unconditional one. That is, none of the
evaluated conditions are changed by the action of branching.

If the decision is not to branch, then the program continues in the
normal forward direction executing the next instruction in line. The ef-
fect of not branching is identical to the effect that would occur if the
branch instruction did not exist at all (except for the processing time
needed to make the decision whether to jump). When a branch is not
taken at the bottom of a loop—usually terminating the loop—the program
is said to “fall through” that point.
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In the 1802 there are short branches and long branches. An easy
way to distinguish between the two op codes is to remember that all
short branches and the one skip begin with 3 (3N) and all long branches
and long skips begin with C (CN).

Short branches are limited to jumps extending no further than the
boundaries of the memory page containing the short branch instruction.
A memory page is arbitrarily defined as a 256-byte block, each byte’s
location in the block having the same high eight-bit memory address.
For example, the hexadecimal addresses 0100-01FF and 1A00-1AFF de-
fine two unique blocks of memory, the first on hexadecimal page 01 and
the second on the page 1A. Note that for any 256-byte memory page the
low eight bits of the address are in the same range from 00 to hexadecimal
FF. Also be aware that 00, not 01, is the first page of memory starting
at 0000.

A short branch instruction may direct program flow to any address
within any page of memory. Short branch op codes are followed by one-
byte addresses (00-FF) telling the computer where the branch is to pro-
ceed. The high eight bits of the address are not important and are not
specified. Because of this, program sections may be designed to run
identically, regardless of what page the code is located on. Such code is
said to be “page relocatable.” (Except for subroutine calls and the point-
ers to data tables, the assembler in Chapter 4 is page relocatable due to
its avoidance of long branch instructions.)

Remember, short branches may never cause program flow to cross
page boundaries.! Don't make the mistake of branching to 0500 from
04F'0 with a short branch to location 00. In that case, what you intended
to go up will come down, a particularly distressing possibility. Short
branching to 00 from 04F0 would cause program flow to be directed to
0400 because the page designation, the 04, is not changed by the short
branch. Only the lower half of the address is affected.

The action that causes branching in the processor is not a complex
one. Whatever address is specified following the op code is simply in-
serted into the register currently designated to be the program counter,
and execution will then begin from the new address formed in that reg-
ister. Short branch instructions cause this single byte, called the argu-
ment to the instruction, to be inserted in the low half of the program
counter. The program itself may insert values into the program counter
too, another way to effect a short branch and an advanced programming
technique used in 1802 interpretive languages.

Long branches require a two-byte argument following the op code.
With long branches, these two bytes are inserted into both halves of the
program counter, thus allowing any 16-bit address to be specified from

' The trick of splitting a short branch across a page boundary—the op code on one
side of the fence and the branch address on the other—is not recommended, although
this would allow short branching forward into a following page.
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hex 0000 to FFFF. Long branches may, therefore, branch to any new
location in addressable memory without regard for page boundaries. The
address is specified in the correct order, that is, high byte first followed
by the low byte. (This may seem obvious, but many mierocomputers
require 16-bit addresses to be specified in reverse byte order.)

Here are some examples of unconditional long and short branches
as they would appear in a machine language program.

0249 30 04 BR 04 ; Short branch to location 0204
024B CO0 07 00 LBR 0700 ; Long branch to location 0700
024E 30 4E BR 4E ; Short branch to location 024E

Examine closely the third program line at memory address 024E.
The instruction BR (op code 30) is an unconditional short branch instrue-
tion. Since the byte immediately following BR’s op code is hex 4E, this
instruction is calling for a branch to location 024E. But that is where the
BR instruction itself is located! The effect is to halt the program in an
unending loop, the computer constantly, tirelessly, reliably executing the
same branch instruction over and over and over until some kind soul
kicks out the plug (or flips a reset switch).

Actually this “branch-to-itself” technique is a useful way to end a
program or to insert a stop at a location when the program counter is
unknown.

O 0O O

There are two unconditional branch instructions in the 1802 set.
We have seen them both, the BR short branch and the LBR long branch.

All of the rest of the branches are conditional types. The short
branch conditionals are BZ, BNZ, BDF, BNF, BQ, BNQ, B1, BN1, B2,
BN2, B3, BN3, B4, and BN4. The long branch conditionals are LBZ,
LBNZ, LBDF, LBNF, LBQ, and LBNQ. Each of these is explained in
detail in Chapter 3.

O O 0O

It would seem logical to use all long branches, since these allow a
much greater range than the page restricted shorties. But most 1802
software uses short instead of long branching for some very good rea-
sons.

For one, many 1802 computers use the 1861 video display output
chip in their design. The timing requirements of this chip restrict the
programmer to instructions using only two machine cycles for execution.
Machine cycles are derived from clock pulses applied to the processor
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and are what cause the computer to run a program. Long branches and
long skips (in fact all of the CN-type instructions but none of the others)
take an extra machine cycle for execution. These three cycle instructions
affect the critical timing of the 1861 chip, causing the display to jump
and jitter. Using the three-cycle instructions can’t hurt the display, but
the jiggle doesn’t do much for the eyes of the programmer (or the pro-
grammer’s poor victims). The assembler in Chapter 4 does not use any
three-cyecle instructions for this reason.

Another motive for choosing short branches over long ones is to
gain speed. Because only two machine cycles are used for execution,
short branches will execute faster than long ones. Significant timing re-
ductions may be had by using short branches especially in loops where
the same instruction may be executed hundreds or more times. Using a
long branch to a location within the same memory page is wasteful not
only of time but also of a memory byte and at no advantage to the
program.

Limiting yourself to short branches will also force a modular strue-
ture into your programming. Jumping around indiscriminately in mem-
ory is a sure way to add confusion to a program, possibly leading, when
the program fails, to the uncontrollable urge to jump around on the
computer—wearing lead boots.

After a program is debugged and has been thoroughly tested and
retested, some long branches in place of sub calls at the ends of subrou-
tines may speed up the program. This programmer prefers to keep a
modular design over just about any consideration, but such an optimi-
zation technique may prove useful in some software.

Long branches are good for starting programs at widely separated
memory locations. When used sparingly, they may prove to be more
efficient than another structure, depending on the application.

Ll B

The 1802 skip instructions are unusual in computers. Because all
but one of these are of the three-cycle type, however, their use is also
quite rare, especially in systems with the 1861 video output chip.

A two-cycle skip exists, the SKP (op code 38) instruction, which
also goes by the name NBR. When executed, SKP causes the following
byte to be passed over. That’s all it does but it is sometimes handy in
construeting loops. It may also replace the op code for any of the short
branch instruetions, providing a one byte way to disable a branch during
debugging.

The rest of the skips are long skips. When executed, a long skip
causes the next two bytes to be passed. The unconditional long skip is
the LSKP, which also, like SKP, comes with a duplicate mnemonie,
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NLBR. LSKP may be inserted in place of any of the long branch op
codes to disable a branch for debugging purposes. In that case, the
LSKP, or more correctly the NLBR, means do not branch to the follow-
ing 16-bit address.

In addition to the two unconditional skips, there are seven condi-
tional long skips. These are LSZ, LSNZ, LSDF, LSNF, LSQ, LSNQ,
and LSIE.

Each one of these long skips will cause the next two bytes to be
passed over based on a defined condition existing at the time the instrue-
tion is executed. If the condition is found not to exist (i.e., evaluates as
false), then the skip does not happen and the following instruetion or two
instructions just after the skip will be executed.

Perhaps the single most important use of skip instructions is in the
design of relocatable code. Such code will run regardless of its position
in memory. However, because of the limited range of the skips, they will
not usually take the place of branching.

The following example shows the most common use of a short
branch as a control in a loop. Note that the routine begins with an SKP
instruction, causing the first instruction of the loop to be passed at the
start.

SKP ;Skip the next instruction

LOOP: DEC RF ;Subtract 1 from loop count in RF.0
LDA RB ;Get a byte from location @ RB
STR RA ;Store at location addressed by RA
INC RA :Add 1 to address in RA
GLO RF ;Get the loop count in RF.0
BNZ LOOP ;If # 0, branch back to LOOP

;(continue, or fall through on RF.0 = 0)

This is the first actual assembly program presented in this book so
some of the instructions and formats have not been covered. But we are
concerned only with the action of the SKP and the BNZ. The SKP causes
the DEC RF instruction not to be executed the first time. Instead, the
instructions following DEC RF are performed. (You do not have to un-
derstand what these do just yet, but the action is to transfer bytes ad-
dressed by RB to a new location addressed by RA.)

The GLO RF instruction brings the value of the low eight bits of
register RF into the D register. Following this, the conditional branch
BNZ is executed. This instruction evaluates the D register, and if the
value there is not equal to zero, the branch will be performed. If D is
not zero, program flow would be directed back to the location labeled
“LOOP” in the example. At that point the DEC RF, which had previ-
ously been skipped, would be executed, causing the value in register RF
to be decremented by one. Each time through the loop, the value of RF
is tested (in D) by the branch instruction. If it is not 0, a jump will oceur,
RF will be decremented, and the code in between the top and bottom of
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the loop will be performed. When RF finally equals 0, the branch will
not be taken and the program will continue past the BNZ instruction.
Therefore, the loop is executed one time more than the value in register
RF. (If RF = 0 at the start, the loop is still executed at least but only
onee.)

The following example shows a more basic construction for loops.
LDI and PLO have not been covered yet. Their action is to set a value
into RF that will indicate the number of times the loop is to be executed.

LDI SNN :Load into D the immediate value NN
PLO RF ;Put NN into low part of RF as loop count
LOOP: ( ) ;  whatever code is to be performed
( ) ;  during the loop goes here. It
( ) ;  will be executed at least one time
DEC RF ;Subtract 1 from RF loop count
START: GLO RF ;Get the value of RF for testing
BNZ LOOP ;If # 0 yet, branch to LOOP. Else fall
(continue) ;  through here and continue program

Most important to the functioning of the loop are the last three
instructions. If you aren’t sure what these instructions do, take a mo-
ment to read about them in the next chapter.

For this type of loop, always subtract 1 from the loop count (DEC
RF), get the value of the loop count into D for testing (GLO RF'), then
branch back to restart the loop if D # 0.

Unlike the loop that began with the SKP, this loop will be executed
exactly the number of times specified in register RF. In the event RF
is set to 0 before entering the loop, the code will be executed 256 times,
not 0 times. This is because RF is decremented before it is tested, and
subtracting 1 from 0 will cause the value in RF to “wrap around” to its
highest eight-bit value, hex FF.

A way to cause the loop not to be executed when RF is set to 0 is
to start execution of the loop following the code to be performed inside
the loop. This corresponds to the location “START” in the example. A
branch to START (BR START) would be inserted between the PLO RF
instruction and the instruction at location LOOP. If RF equals 0, then
the loop will not be performed, but now the maximum loops possible
using a single-byte loop counter are 255, not 256 as before.

This loop construction is so common that it will eventually become
automatic in your programming. Be careful to bring the loop count into
the D register before testing if it is equal to 0. Other processors allow
register values to be tested for 0 directly through the use of an auto-
matically set flag. No such capability exists with the 1802, which re-
quires byte values to be brought into D for evaluation.

Other common uses of branching include testing the status of in-
dividual bits in a byte. Again, the byte containing those bits must first
be brought into the D register. Assuming this has been done, the LSB
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of the byte may be tested by first moving it into DF by shifting. For
example:

TSTBIT: SHR ;Shift LSB of D into DF
BDF ONE ;If DF = 1, then short branch to ONE
BR TWO ;If DF = 0(# 1) then branch to TWO

The above code will branch to either location ONE or location TWO
depending on the status of the LiSB of the byte in D.

Another way to accomplish this, but at the expense of an additional
byte, is to use the logical AND to mask out all but the bit we want to
test. The following example branches to one of two locations depending
on the status of bit 2. Again, D is assumed to hold the byte containing
that status bit.

TSTBIT: ANI $04 ;Logically AND D with binary 0000 0100
BNZ ONE ;If result is not zero, short branch to ONE
BR TWO ;Ifresult is zero, short branch to TWO

Only if bit 2 is set to 1 will the logical AND cause the result in D
to be unequal to 0. Individual bits or combinations of those bits may be
tested in this manner. The programmer may assign significance to the
status of each individual bit so that it is possible to keep eight status
evaluations, or “flags,” in a single byte.

O O O

Apply branching with respectful reserve and it will become a most
useful programming tool. Break a program into small chunks, each chunk
with a single uncomplicated function to perform and all chunks linked
together with subroutine calls. Try to keep all branching inside those
chunks—your programs will be easier to read, debug, and understand,
and you will have used branching in the correct way—as little as possible.

Operations on Memory

Some of the instructions and programming examples explained in
previous sections caused bytes in the D register to be manipulated or
evaluated (e.g., in the case of branching). Arithmetic instructions use
the value in D as one of two operands. A way must exist for loading and
storing bytes to and from memory locations and the D register. This
section covers those operations.

Loading and storing values in computers gives the programmer the
ability to move bytes in memory around and to put values in known
places for later retrieval. In the 1802, all load instructions bring values
into the D register, while all store instructions take the value of D and
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put it into memory. In both cases, one of the 16 general-purpose scratch
pad registers holds an address pointing to the desired memory location.
Except for RO with the LDN instruction, any of the 1802 registers may
reference a memory address for a load or store operation.

Loading a value from memory does not change the value at its
memory location. After bringing a value into the D register from a spec-
ified address, that value still exists at the same memory location as it
was before. Loading the same value over and over does nothing to change
that value. It is constant. Actually “copy a value into D” would be more
descriptive of what a load instruction on the 1802 does. Other computers
follow this maxim.

Storing values in memory locations is similar except for direction.
When storing a value from the D register, that value is unchanged in D
by the process of putting it into memory. Setting successive memory
locations to some value is therefore possible without having to reset the
D register following execution of the store instruction. “Copy D into
memory” is highly descriptive of what a store operation accomplishes.

The 1802 instructions used to directly manipulate and work with
memory bytes are LDN, LDA, LDX, LDXA, LDI, STR, and STXD.
There are five load instructions and two store commands in the set.

LDI is one of the most often used instructions in 1802 software.
This load immediate instruction will cause the D register to be set equal
to a constant specified just following the op code for the LDI. Like the
short branches, LDI requires a single-byte argument, the value of which
is loaded into D. The following example loads F'F into the D register.

0450 F8 FI' LDI $FF ;Load FF into D

The other four load instructions operate via registers addressing
memory locations from where values are to be loaded. (LDI always uses
the program counter register to “fetch” bytes into D.) LDN and LDA
specify which of 16 registers (15 for LDN as RO is “illegal” for that
instruction) is to be used as a memory pointer. This is done by setting
the second digit of the op code to the desired register hex number. LDX
and LDXA also require one of the 16 registers to address memory but
in a different way. For these two instructions, a separate 1802 register,
the X register, is set to specify one of the 16 scratch pad registers. If X
is set to 2, for example, then register R2 will be the active pointer during
execution of LDX and LDXA. How and why to set X is discussed later.

Except for this distinetion, LDN, LDA, LDX, and LDXA operate
similarly. LDN and LDX bring a byte into the D register from a des-
ignated address. The register holding that address is not changed, only
the value in D is subject to change. LDA and LDXA (the “A” means
“advance”) also bring a byte into the D register, but with these two
mnemonics, the register holding the address of that byte is automatically
incremented by one after loading. This provides a simple way to load
bytes from sequential memory locations, one after another into D.
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The two store instructions also require a register set to an address,
in this case pointing to the destination where bytes are to go. STR causes
D to be placed into memory, and like LDN and LDX, the addressing
register is not changed. STXD stores bytes using the X register to select
in this indirect manner one of the 16 registers to be the pointer. The D
of STXD means “decrement” and, following execution of this instruc-
tion, the value of the specified register will be one less. Thus, bytes may
be stored sequentially at decreasing memory addresses with a single
byte instruction.

O O 0O

Loading and storing bytes in memory as a way to preserve results
of operations is an obvious use of this instruction sub set. Blocks of data
may be examined by loading values into D, video graphies displays may
be animated by changing selected bytes, and generally anything requir-
ing the manipulation of memory may be performed by these instructions.

Not so obvious are programming techniques such as stack control
using this instruction group. A stack is a block of memory set aside to
contain values that the programmer wants to retrieve later. By using
the LDX, LDXA, STR, and STXD instructions, bytes may be put onto
the stack (pushed) then returned to D (popped) when needed. In a stack,
the last byte pushed is the first one to be received in a way that requires
strict discipline in the programming of code. We'll see more of the all-
important stack in a later section.

Load-and-store instructions—in combination with others—are often
used in a fashion that gives the structure of data in memory an impor-
tance perhaps equal to the data itself. There are many possibilities: tree
structures in which each element of data contains a pointer, an address
to the next element, as well as the data itself; sorted lists in which data
is rearranged into numerical order; other types of linked lists; and buffers
whose jobs are to serve as halfway houses for data on its way in or out
of a computer. In all of these processes, the load-and-store instructions
will play major roles.

Load-and-store instructions may also be used to relocate other in-
struction codes, which, except when being executed by the computer,
may be viewed simply as data. This is an advanced technique employed
in operating systems to use available memory efficiently during booting
of disk control routines and other fancy stuff. For such a method to
operate, however, the code needs to be designed in a relocatable way,
and this may be easier to do on some computers than others.

A word of advice needs to be included on another possible use for
a store instruction. The use is the design and programming of self-mod-
ifying code. The advice is “don’t.”
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A self-modifying program is one that actually creates, through var-
ious operations, the instruction codes that are eventually to be executed
along the line. Store instructions place this code into the proper memory
locations. At least that’s the theory. In practice, this can be a most
difficult and frustrating technique to manage. Algorithms taking on a
self-modifying structure as their basic building block may lead to some
brain-fusing “chicken or egg” debugging walk-throughs for the pro-
grammer.

Simulator programs that duplicate their own microprocessor on
which they are written may make extensive use of self-modifying code.
These programs are useful when debugging software and usually allow
single stepping and register displays as well. Note that any self-modi-
fying routine must exist in RAM for it to operate.

With the admonishment never, never to use self-modifying code,
here’s one way to write such a demon. (Actually, self-modifying routines
can be fun to experiment with—it’s exciting to think that a program can
help to create itself—but be prepared for the worst if you plan to try
some of this forbidden fruit!)

The following demonstration takes an instruction from the low part
of register RF and inserts it into itself for execution. R3 is the program
counter and is used as the pointer to store the instruction for execution
just before the computer gets to the memory location where the stored
instruction is to be obtained (gulp!).

MADMOD: GLO RF ;Get instruction from RF
STR R3 ;Store at the following memory location
7 ;Execute mystery instruction
LDI $23 ;Load immediate a 23 (DEC R3) byte
STR R3 ;Store at the following memory location
7 ;Stop by continually decrementing R3

This routine has as much right to be in this book as the devil has
to appear in the Bible. I hope I’ve made my point.

Operations on Internal Registers and Miscellaneous

Throughout the book we have been using the 1802's scratch pad
registers as address pointers and have been suggesting that data may
be held by a register for later use. Remember that a register is similar
to a location in memory except that it exists inside the microprocessor
electronies.

The 1802 is fortunate to have sixteen 16-bit registers—some mi-
croprocessors have only three or four eight-bit registers. In those com-
puters, memory locations are usually set aside to function as the proces-
sor’s registers, something a bit awkward to accomplish on the 1802,

Setting registers to known values is basic to computer program-
ming. For example, when storing the value of D in memory, a register
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is used to specify the address where that value is to go. The programmer
needs a way to load a register with that address. Similarly, because of
the all-important D register, values in the seratch pad registers may be
pulled into D for manipulation, testing, or outputting to somewhere else.

1802 registers are split down the middle into two halves, upper
and lower. Each half is eight bits long, and it is possible for the pro-
grammer to manipulate and make use of any register either as a whole
16-bit entity or as two individual eight-bit units.

Each half of a register is specified using the following notation.

—8 bits high— —8 bits low—
| RN.1 | RNoO |

REGISTER RN

“R” of course means “register” and “N” stands in place of a hex
digit specifying which particular register, 0-F. R4 would refer to reg-
ister 4, RA to register A, ete.

The period that may follow RN is in turn followed by either a 1 or
0 specifying either the high or the low portion of register RN. RB.1
would mean the high or leftmost eight bits of register RN; R0.0 means
the low or rightmost eight bits of register RO, ete. If no qualification is
attached to the register, then the entire 16 bits of that register are being
referred to.

The distinction between the high and low portions of a register are
important to a programmer’s allocation of registers to be used during a
program run. RE.1, for example, may be intended as a holder for a
specific value during a subroutine, while its partner half, RE.0, is rele-
gated to an altogether different use, perhaps as a loop counter. Or the
entire register RE may be used to hold a 16-bit address that will point
to a block of data the program will need to access.

But the qualification is for the programmer’s notes only. The com-
puter understands which register half is to be acted on by virtue of
whatever instruction is being executed.

In assemblers that allow labels to be used instead of addresses, the
distinction between the high part and low part of an address may also be
specified in the same way. Still the notation is not directly understood
by the computer; rather, it is a convenient way to instruct the assembler
to which half of the 16-bit value it is to use. ASMBLR.1 would mean the
page or high eight bits of the address where that routine is to be found.
With many computer instruction sets, unlike the 1802, this notation be-
comes less important and in many assemblers it is not even used.

There are four 1802 instructions used to transfer eight-bit values
to and from any of the 16-bit registers. These are GLO, PLO, GHI, and
PHI. The action of transferring is similar to the load-and-store instruc-
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tions with the D register either accepting a value from a register or
holding a value that is to be inserted into a register.

Each of these four may only operate on a single eight-bit half of a
register. Therefore, in order to set a 16-bit register to some value, at
least two instructions will have to be executed.

PLO and PHI transfer (PUT) the value of D into the low or the
high part, respectively, of register RN. “N” is specified as the second
digit of these instructions’ op codes. The op code for a PLO R2 would
be A2, for example, while A9 would specify the same PLO instruction
but for register R9. The same holds true for the rest of the instructions
in this group, but with the use of an assembler, the programmer may
not have to be aware of this process.

GLO and GHI transfer (GET) bytes out of the low or high parts of
registers placing the value into D. Again, only one-half of any register
may be brought into D at a time.

Just as with load-and-store operations, these four register instruc-
tions do not alter values in their original locations. Putting D into a
register does not change D. Bringing a register value into D leaves that
value unchanged in the register. “Copy” would again be a more deserip-
tive word for the action of these instructions.

5 B i

In the loop examples in the section on branching, a GLO RF in-
struction was used to bring the low half of register RF into D to test if
those eight bits were equal to zero. The action of the loops in those
examples is dependent on the ability of the program to know at just what
point RF goes to zero.

Another use for registers is to serve as holders of intermediate val-
ues that will be used by other parts of the program. The value could be
stored in memory, but many times it will be faster to simply put a number
into an unused register half, then get it back again later when the value
is needed. In this way registers may act as instantly accessible variables.
Frequently, subroutines will pass values back to other routines by put-
ting the results of their operations into a register or registers.

When a register is to be used to hold the address of a memory lo-
cation, that address is put into the register most commonly in the follow-
ing way.

SETBUF: LDI §$04 ;Load immediate value $04 into D
PHI RB ;Put value of Din RB.1
LDI $00 ;Load immediate value $00 into D
PLO RB ;Put value of D in RB.0
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1802 MICROPROCESSOR INSTRUCTIONS

ADC 74 IDL 00 ORI F9
ADCI 7C INC 1N oUT 6N, 1<=N=7
ADD Fh4 INP 6N, 9<N=F PHI BN
ADI  FC IRX 60 PLO AN
AND F2 LBDF C3 REQ 7A
ANI  FA LBNF CB RET 70
B1l 3h4 LBNQ C9 RSHL *7E
B2 35 LBNZ CA RSHR #*76
B3 36 ILBQ C1 SAV 78
B4 37 LBR CO SD F5
BDF *33 1LBZ C2 SDB 75
BGE %33 LDA 4N SDBI 7D
BL  *3B IDI F8 SDI FD
BM  ¥3B LDN  ON SEP DN
BN1  3C LDX Fo SEQ 7B
BNZ 3D IDXA 72 SEX EN
BN 3E 1LSDF CF SHL FE
BN 3F LSIE CC SHLC *7E
BNF *#3B LSKP *C8 SHR F6
BNQ 39 LSNF C7 SHRC *76
BNZ 3A LSNQ C5 SKP #38
BPZ #33 LSNZ C6 sSM F7
BQ 31 LsQ@ CD SMB 77
BR 30 1SZ CE SMBI 7F
BZ 32 MARK 79 SMI FF
DEC 2N NBR *38 STR 5N
DIS 71 NLBR *C8 STXD 73
GHI 9N NOP cl XOR F3
GLO B8N OR F1 ¥RI FB

#These instructions have duplicate mnemonics.

The effect of these four instructions is to set register RB to the 16-
bit value 0400, an address in memory. Some future operation may exe-
cute, for example, an STR RB or an LDA RB, which would transfer
bytes to and from location 0400 via register RB.

When many registers need to be set at the beginning of a program
or a subroutine (programmers say “initialize the registers”), if some
registers are to have the same values, some space may be saved in the
following way:

INIT: LDI $06 ;Load immediate value $06 into D
PHI R8 ;Put value of D into R8.1
PHI R9 ;Alsoin R9.1. (R8.1 = R9.1 = 06)
LDI $00 ;Load immediate value $00 into D
PLO R8 ;Put value of D into R8.0 (R8 = 0600)
LDI $20 ;Load immediate value $20 into D
PLO R9 ;Put value of D into R9.0 (R9 = 0620)
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Because the value of D does not change when it is copied into a
register, as many registers as needed may be set to D’s current value
by executing successive PHI RN instructions.

O o O

To discuss all the possible uses for transferring bytes to and from
registers would be monumental (and extremely exhausting). Many ex-
amples of these instructions exist in the assembler in Chapter 4, and the
reader is encouraged to examine the listing for a better understanding
of their actions.

O O O

Two other instructions in the 1802 repertoire act directly on the
16-bit scratch pad registers. They are extremely simple to use and un-
derstand.

INC adds (increments) 1 to the 16-bit value in register RN.
DEC subtracts (decrements) 1 from the 16-bit value in register RN.

You now know everything there is to know abount INC and DEC!

Note the definitions specify the “16-bit value of RN.” These two
instructions act without regard for the division of each register into two
eight-bit halves. Incrementing and decrementing are performed on the
entire register, providing an ability to count by one all the way up to (or
down from) FFFF if desired. (Not so difficult for a computer to do, of
course.)

The following subroutine demonstrates one way to take advantage
of this 16-bit action.

TIMER: LDI §FF ;Load immediate value $FF into D
PHI RF ;Put Din RF.1
PLO RF ;And in RF.0 (RF = FFFF)
LOOP: DEC RF ;Decrement RF by 1 over 16 bits
GHI RF ;Get RF.1 to test
BNZ LOOP ;If RF.1# 0, branch to LOOP
RETN ; Return from subroutine

This timing loop works by first setting RF to its highest possible
value (but any value could be used for shorter timing intervals). By dec-
rementing RF, then testing the high eight bits of the register rather than
the low eight bits (RF.0) as normal for loops, the maximum number of
loops are performed before the subroutine ends. To understand better
how the timer operates, work out the values of RF and D on paper as you
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1802 HEX CODES

00 IDL 6N, 9sNsF INP cé6 LSNZ
ON LDN 70 RET c7 LSNF
1N INC 71 DIS c8* LSKP
2N DEC 72 LDXA c8* NLBR
30 BR 73 STXD c9 LBNQ
31 BQ 2l ADC cA LBNZ
32 BZ 75 SDB CB LBNF
33 BDF 6% RSHR ce LSIE
33 BGE 6% SHRC CD 1sQ
33% BPZ 77 SMB CE LSZ
34 Bl 78 SAV CF LSDF
35 B2 79 MARK DN SEP
36 B3 7A REQ EN SEX
37 B4 7B SEQ FO LDX
38% NBR 7C ADCI F1 OR
38% SKP 7D SDBI F2 AND
39 BNQ TE#* RSHL F3 XOR
3A BNZ TE* SHLC FlU ADD
3B* BL 7F SMBI F5 SD
3B#* BM 8N GLO Fé6 SHR
3B* BNF oN GHI F7 SM
3C BN1 , AN PLO F8 LDI
3D BN2 BN PHI F9 ORI
3E BN3 co LER FA ANT
3F BN4 c1 LBQ FB XRI
Ly LDA c2 LBZ FC ADI
5N STR c3 LBDF FD SDI
60 IRX ch NOP FE SHL
6N, 1=N<7 OUT cs LSNQ FF SMI

#These instructions have duplicate mnemonics.

“walk through” the subroutine. (Warning—youw’ll need a lot of paper to
go to the end and I don’t suggest you try to finish this project unless you
have a few months of time to kill!)

One further note about INC and DEC. Decrementing the value
0000 results in FFFF, and incrementing FFFF will produce 0000. Thus,
the registers act in “wraparound” fashion. The overflow DF register is
not affected by these two conditions—in fact there is no way to tell
anything at all about the values in registers without first bringing those
values with GLO and GHI into D.

Miscellaneous

There are a few 1802 instructions that refuse to be placed into
categories. (Stubborn little guys.) Like most processors, the 1802 has
several commands that take advantage of their computer’s unique strue-
ture.

Except for NOP, the rest of the instructions discussed in this sec-
tion are probably unique to the 1802. NOP does nothing, and believe it
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or not will be used quite often. Most computers contain an NOP (no
operation) instruction that will simply hold a place in a program for a
later instruction, or replace an instruction of questionable action during
debugging. Fill a computer with NOPs and run the program and abso-
lutely nothing will happen. Most beginners to programming are surprised
to find such an instruction and then are equally surprised by how many
times they need to use it.

IDL is another 1802 specialty command (see Chapter 3). It causes
the program to wait for an interrupt to oceur, an important feature of
programming we’ll see in a moment,

Four unique 1802 commands make use of a different bank of reg-
isters that exist in the 1802. These registers, X, P, T, and Q, exhaust
the register supply in the processor and, unlike the general-purpose
scratch pad registers, may be used only in restricted and defined ways.

Actually, Q is not truly an internal register—it is rather thought
of as a flip-flop, an electronic switch that can be turned on or off. Viewed
as a register, Q many contain the single bit values 1 or 0. Viewed as a
switch, @ may be connected to external devices providing a way to switch
those devices on or off under software control.

The instructions affecting Q are SEQ and REQ, which turn Q on
and off, respectively (see Chapter 8 for more details on Q).

The X and P registers are two of the most important in the 1802
structure. Each is four bits wide and each may be set to contain one of
16 binary values from 0000 to 1111. This corresponds to the hex digits
0-F, which in turn correspond to each of the sixteen 16-bit general-pur-
pose scrateh pad registers.

The P register designates which of the scratch pad registers is to
be used as the program counter. If P is equal to three, then the program
will run at the address in register R3. If R4 contains a different address,
setting P to four would cause the program to begin executing at that
address. Then setting P equal to 8 again would take control back to
where R3 pointed to when P was changed to 4.

Because switching program counters leaves the previous counter
pointing to wherever P was changed, setting P provides an acceptable
means for jumping around in memory at will. It is acceptable, as com-
pared with long branching, because now there exists a way to get back
to where the jump occurred where with LBR this would not be possible.

The 1802 instruction associated with the P register is SEP. Per-
forming SEP R3 causes R3 to become the program counter. SEP RC
would start the program running at the address in register RC.

RO is the normal 1802 program counter when starting a run. How-
ever, since RO is usually reserved for other uses, one of the first opera-
tions of any 1802 program is to switch to another program counter reg-
ister. R3 is most often chosen as the new program counter, and the
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reader is advised to stay with this convention or else software that is not
compatible with other 1802 systems may result. R3 is the program
counter for the assembler in Chapter 4.

The following routine at the beginning of an 1802 program will
change program counters from R0 to R3.

0000 90 GHI RO ;Get R0.1 (=00 as P=0 here)
0001 B3 PHI R3 ;Put in R3.1 to be new PC
0002 F8 06 LDI START.0 ;Load low byte start address
0004 A3 PLO R3 ;Put in R3.0 (R3=0006)

0005 D3 SEP  R3 ;Set P=3 and begin running
0006 — START: — ;  the program at 0006 with

; R3 as the program counter

Following this routine, RO is free for other uses.

O O O

Register X has the same four-bit length as P and is also used to
specify one of the 16 scratch pad registers. The 1802 instruction that
sets X to any hex digit from 0 to F' is SEX, and after thinking about it
for a while, the author decided to refrain from any comments on the
designer’s inclinations in the course of choosing this eye-catching mne-
monic.

The X register is normally set to 2 with a SEX R2 instruction
usually early in the program. R2 is set to address the bottom of a block
on memory reserved as a stack. A stack in memory resembles a stack of
dishes in a spring-loaded cafeteria well—the last dish put onto the stack
must always be the first one to come off the top. R2 is used in most 1802
software to address the topmost free location in the stack, which grows
and shrinks as needed by the program.

When X is used in this way, it is said to “designate the stack
pointer,” indicating which register will be used for stack control.

Except for the “immediate” type of arithmetic instructions—those
that take as the second operand the byte immediately following the in-
struction op code—X is used to select a pointer to the second operand,
which could be anywhere in memory. Supposing that we want to add
nine to an unknown value stored at location ANSWER. All we know
about the value of ANSWER is that it is stored at location 0620 and that
it needs to have nine added to it. The following code will accomplish this.

0000 F8 06 BEGIN: LDI $6 ;Load 06 into D

0002 B8 PHI R8 ;Put in R8.1

0003 F8 20 LDI $20 ;Load 20 into D

0005 A8 PLO RS ;Put in R8.0 (R8 = 0620)

0006 F8 SEX RS ;Set X=8 to reference register R8
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0007 T8 09 LDI $9 ;Load 09 into D
0009 F4 ADD ;Add D + byte at 0620 via X
000A 58 STR R8 ;Store result in D at 0620 via R8

000B 30 0B STOP: BR STOP  ;Branch to here to halt program

Although we have neglected overflow, the byte at 0620 has been
increased by nine then stored back at 0620. The other math instructions
ADC, SM, SMB, SD, and SDB also operate with one byte in D and the
other at a location pointed to by register RN. Setting X to N activates.
that register for use by these math operators.

Loops can frequently be shortened by using the LDXA and STXD
instructions. These instructions also require X to designate the address-
ing register. Not only may bytes be loaded or stored with these two in-
structions, but the register-addressing memory indicated by X is auto-
matically advanced or decremented. Compare the following routines for
an example. Assume R5 to be set to the end on some memory location
where we want the next eight bytes up to be set to zero.

Routine A Routine B

SETZER: LDI $8 SETZER: LDI $8

PLO RF PLO RF
SET1: LDI $0 SEX R5

STR R5 SETI: LDI $0

DEC Rb STXD

DEC RF DEC RF

GLO RF GLO RF

BNZ SETI1 BNZ SETi1

No comments have been added so that you may more easily com-
pare the routines side by side. The two are the same length and perform
the same job. Both use RF.0 as a loop counter set to eight in the way
explained earlier.

Routine A uses an STR R5 followed by a DEC R5 pair to sequen-
tially store the value 00 in D at eight decreasing memory locations. Rou-
tine B first sets X equal to 5, then executes the STXD instruction to
store D (00) at R5, designated by X, while decrementing R5 automati-
cally.

Although each routine is the same apparent length, Routine B is
faster because the inner loop is shorter. Removing the one instruction
from inside the loop means eight fewer instruction executions because
the loop will be performed eight times. On loops that execute many more
times, removing an instruction may have drastic results. If a loop will
be performed 255 times, for example, removing just a single instruction
would be the same as shortening a nonloop program by a full memory
page!

Another use for the X register is to permit different registers to
be referenced by the same subroutines. On one execution X may be set
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PROGRAMMER 'S 1802 WORKSHEET PAGE OF

PROGRAM TITLE DATE / /

] PAGE ADDRESS PROGRAMMED BY
ADDRESS OPCODE ” LABEL MNEMONIC REF J COMMENT

to 2, then on the next, X may be set to E, allowing the same routine to
perform first via R2, then via RE. Like self-modifying code, however,
this may be difficult to manage.

Two other instructions depending on the X register to select a
serateh pad register are the IRX and the LDX. The LDX is a load
instruction the same as LDN except that X selects the active register
holding an address from which a byte is to be loaded. After LDX, the
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register address is not changed. IRX increments just as INC but again
needs X to tell the computer which register to increment. If X equals
six, for example, IRX would do the same job as INC R6. Note that there
is no X equivalent for STR. The only store instruction that operates
through X is STXD.

O O O

Four unique 1802 instructions, SAV, MARK, RET, and DIS are
explained fully in Chapter 3. For the most part, these four will be seen
in interrupt handling, a procedure to be discussed in the next section.

To understand these, however, you need to be aware of yet one
more 1802 register, the eight-bit T (for Temporary) register. The only
time T is used is during SAV and MARK when it holds the packed values
of the X and P registers. The T register may not otherwise be set or
used by the programmer.

Input/Output

Because this book is concerned with programming the 1802, not
much attention will be given to input and output, since this is necessarily
dependent on hardware. Terminals, keyboards, music synthesizers, and
devices of all sorts may be controlled by the 1802, and software may be
written to do the controlling. But first the devices must be somehow
wired to the computer. The following discussion, therefore, is intended
as a general reference to techniques typically employed in writing such
software, not for hooking up “machines” to the “machine.”

The two 1802 input/output instructions, INP and OUT (what else?),
are supplemented by four flag lines, EF1, EF2, EF3, and EF4, as well
as by three control lines, N0, N1, and N2. The Q flip-flop may also play
a part during input/output, since it can be hooked up to an external
device as well.

In all computers, some sort of “bus” will be constructed to carry
signals on their way in and out of the processor, sometimes bypassing
the computer circuits and going directly to memory. With eight-bit mi-
crocomputers, this bus consists of eight separate lines or electrical path-
ways that are “bidirectional.” That is, data may travel on the bus in
either direction—this is something like being able to flip the backs of the
bus’s seats down when riding the other way. Data may, however, go
only one way at a time.

The computer uses this bus internally as an eight-lane highway to
and from memory devices for instructions that require a reference to
memory. Transfers of data, ete., are all handled (without the program-
mer’s help) via the bidirectional data bus.
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The 1802 input/output instructions in combination with hardware
may be used to energize the bus to a particular value (OUT) or capture
the signals on the bus (INP) as a binary value, storing that value in
memory. These instructions are discussed in Chapter 3 along with the
coincident action of the three “N” lines. Latching circuits at the end of
the data bus are usually given the descriptive titles, input and output
“ports.”

Flag lines are channels that may be used to signal (or flag) the
computer that a condition exists outside of the computer. These lines,
which may be set only by external devices, may also be used to input
serial data. Serial data is information that comes in a bit at a time as
compared with parallel data, which is transferred one byte (or many bits)
at a time. The data bus carries parallel data, for example. For operating
with serial information, the computer needs a program to interpret each
bit as it comes in, packing bytes with those successive bits forming whole
byte values from the serially fed data.

The short branch instructions that conditionally jump depending on
the state of flag line may be used in conjunction with INP to accept data
from the outside would. A typical case is an ASCII keyboard. ASCII
stands for “American Standard Code for Information Interchange” and
is a standard binary code for representing alphabetic characters, num-
bers, and punctuation. Also, “control characters,” those that instruet
the computer to do something, are represented in ASCII. A carriage
return, hex OD for example, tells the computer to do just that on the
printer or video screen. An entire communications system may be con-
structed with ASCII as a basic building block.

ASCII has become so popular that it is just about unnecessary to
mention other codes such as Baudot. The assembler in Chapter 4 is writ-
ten to understand ASCII and is therefore compatible with most key-
boards, text editors, ete.

When a key is pressed on an ASCII keyboard, its circuits are wired
to produce a unique character code in the hex range of 00 to 7F. This
parallel output from the keyboard is sent directly to the processor’s data
bus for input to the processor and memory via an INP command.

However, the computer needs to know that a key has been de-
pressed, and for this reason, along with the ASCII data a strobe or single
pulse is sent each time any key is pressed. The separate strobe line is
connected to one of the 1802 flag lines. A routine using conditional
branching may then test for the action of a key being depressed. When
a key press is sensed, the program would be directed to take the nec-
essary steps to input the ASCII code.

The following routine would do just this. EF4 is the flag line that
is hooked to the keyboard’s output strobe.
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KEYIN: SEX RB ;X = B. Byte input via X
BN4 KEYIN ;If no keypress, wait in loop
INP DEVB ;Input to D and via RB (because X = B)
BN4 KEYIN ;If no keypress, repeat (bounce)

HERE: B4 HERE ;If still keypress, wait till turned off
RETN ;Return

Alternatively, the following routine could be used but without the
feature of checking for a solid (debounced) key press as above.

KEYIN: SEX RB X =B
BN4 KEYIN  ;Wait for keypress
INP DEVB ;Input

HERE: B4 " HERE  ;Wait for key release
RETN :Return

Bouncing is the action of two electrical contacts that come so close
together that electricity is conducted in erratic pulses even though the
switch may not actually be closed. Unless something is done about this
bounce, or arcing, between the contacts, fast computer routines such as
these may read the bounce to be tens or hundreds of valid key presses
instead of only one.

Usually keyboards and other circuits should be debounced in hard-
ware as a feature of their design. However, sometimes a software de-
bounce will help, although it is difficult to construct a truly reliable de-
bounce routine.

Note that a device number is specified with INP instruction. Most
often a latch cireuit is used between the device, the keyboard, or other
input device and the computer. The DEVB designation is to activate
device B, the latch circuit holding the information to be accepted as input.

For both INP and OUT, different devices may be activated through
hardware decoding of the 1802’s “N” control lines. These three lines
mirror the last three bits of the op code either for INP or for OUT.
Seven input or seven output devices may be easily controlled, and an
unlimited number by the addition of extra decoding circuitry.

Output works in a fashion almost the reverse of input. (But see
Chapter 3 for important differences between INP and OUT.) Bytes are
transferred to the computer’s bus by an INP instruction. Again, some
sort of latch circuit is connected to the eight bus paths to “catch” bytes
intended for output. The three “N” lines are used to select this latching
cireuitry that will then hold the value placed on the data bus by an OUT
instruction.

Next, the computer will usually need to signal an external device
that a piece of data awaits in the latch. The Q line may do this by being
set, then immediately reset, to provide an “output strobe,” which will
send the data from the latch on toward its final destination.
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The next routine demonstrates a way to output a byte of informa-
tion to a device, in this case a printer, hooked to a latch, which in turn
is hooked to the computer’s parallel data bus. The 1802 Q line is hooked
to the device’s flag line much in the way the example keyboard earlier
was hooked to the computer’s flag line. (This should suggest to you a
simple way to hook two computers together in a sort of binary herma-
phroditic arrangement.)

PRNOUT: SEX RB :X = B. RB addresses byte for output
ouT DEV3 ;Output to latch. RB is advanced
SEQ ;Set Q@ = 1 then Q = 0 to strobe
REQ ;  the output on to the printer
RETN ;Return

The printer would have to possess the ability to understand parallel
data usually in ASCII code form. Video devices exist on the market that
could accept data for printing on a CRT (a cathode-ray-tube, a television
monitor). This routine could be used to print a character addressed by
RB on the monitor screen. Note again that a device number is associated
with OUT. In the example, the device selected is the output latch or
port connected to the data bus.

A higher sophistication of control is possible by using data itself to
select one device over another. In that case the data would be decoded
by circuits to activate the proper device. Some computers also use ad-
dress lines to output data. Simply referencing a particular address will
cause a device to be activated.

1

One particularly important technique usually associated with input/
output (but not necessarily with the instructions INP and OUT) is the
handling of interrupt requests and DMA, meaning “direct memory ac-
cess.”

An interrupt is just that. The 1802 (and other computers too, usu-
ally) has an interrupt line that may be connected to an external device.
When a signal is applied to this line, whatever the program is doing is
interrupted and control passes to a special routine called, not surpris-
ingly, the interrupt routine.

You may want to view an interrupt as a request to the computer to
drop everything, remember where you are and what you are doing, run
the interrupt routine, then, when that is done, go back and continue
where you left off.

In computer jargon, this sequence is called “servicing an interrupt
request.” Inside the 1802 there is an internal flag, the interrupt enable
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(IE) flag which may be set, like the Q flip-flop, to 1 or 0 but only indirectly
through the instructions RET and DIS. When IE is set to equal 1, in-
terrupt requests will be acknowledged by the processor. If IE is equal
to 0, however, any interrupt requests are ignored. When an interrupt
request has been acknowledged, the IE flag is automatically set to 0 so
that any future interrupts won’t interrupt the interrupt currently being
serviced. It is the program’s responsibility to reset IE to 1 at the end
of the interrupt routine (usually) to enable future servicing of new in-
terrupt requests.

The actions of an interrupt are strictly defined in all computers and
in the 1802, the following events occur on receiving an interrupt request.

1. IfIE = 1, then set IE< 0 and go to 2. Otherwise continue, ignoring
the request.

2. Pack the values of the X, P registers into the T register.

3. Set P« 1, X« 2. Interrupt routine begins running with register
R1 as the program counter.

Before any interrupts will be sent to the computer, the program
must have set register R1 to the address of the start of the interrupt
routine. When the interrupt line is used in 1802 systems, R1 will not
usually be used for anything else. For example, in RCA’s VIP computer
and with many of the EIf computers, video output is controlled by an
interrupt routine that formats and directs output requested via an in-
terrupt by the 1861 video controller chip. When activated, the 1861 chip
requests interrupts 60 times a second, during which time memory bytes
will be sent to the chip for further processing and output to the video
screen. R1 must be dedicated as the interrupt program counter on these
computers to make use of this video output circuitry.

Following is an example of what an interrupt routine may look like.
You could use this format to construct any interrupt routine.

EXIT: IRX ;Point to saved data on stack

LDXA ;Pop stack

SHR ;Shift right to restore old DF

LDXA ;Pop stack to restore old D

RET ;Return. Restore X, P. Set IE =1
INTRPT: DEC R2 ;Decrement stack pointer—Entry point

SAV ;Push T register (holding X,P) onto stack

DEC R2 ;Decrement stack pointer

STXD ;Push value of D to save

SHLC ;Shift DF left into D

STXD ;Push to save old DF

G D) ;  Interrupt routine goes

() ;  here. Must not change

() ;X without resetting to 2

BR EXIT ;Branch to exit above (X must = 2)
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Registers D, DF, X, and P are preserved by this technique so that
the interrupt could occur during any part of the main program’s execu-
tion without disturbing the program at that point. On return from the
interrupt, all previous conditions will be restored, allowing the program
to continue as if there had been no interruption (except, of course, for the
effect on the interrupt routine itself). Some of the code may be left out.
For example, if the interrupt routine will not change DF (i.e., does not
execute any shifts or arithmetic instructions) then DF does not have to
be saved on the stack. Also, if registers will be needed, they may have to
be saved on the stack then restored along with D, X, and P.

Important to the operation is the placing of the exit portion of the
routine on top of the entry. To exit the routine, a branch is executed to
the very top of the code. This leaves the program counter R1 addressing
the entry point after execution of the RET instruction. Thus, another
interrupt may immediately occur without having to reset the address in
R1.

O o o

DMA, direct memory access, is not an 1802 instruction but rather
a description of a process that bypasses the processor’s D register. An
external device, such as a disk or again the 1861 video chip, signals the
processor that it wants to open a channel directly to memory.

The action may oceur in either direction, directly placing or retriev-
ing bytes in the computer’s memory. The processor serves only as a
blind controller for the memory address set in register RO.

With DMA-IN, bytes are transferred through the eight-line data
bus directly to the memory address in register R0. Following each trans-
fer, RO is automatically incremented so that successive bytes may be
input. Such action is extremely efficient and quick when blocks of data
need to be accepted.

DMA-OUT also requires RO to contain an address in memory. For
each DMA-OUT request applied externally to the 1802, a byte addressed
by RO will be sent to the data bus. Following DMA-OUT, RO is auto-
matically incremented. In this way, blocks of data may be sent to the
outside world.

One good use for an interrupt routine is to control the DMA action
by performing necessary settings of R0. It could also test RO to terminate
the action when the transfer is complete.

Depending on the application, DMA action may require highly ac-
curate timing on the part of both the software and the hardware circui-
try. The reader is directed to RCA’s literature for suggestions on con-
necting devices requiring DMA.
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O O O

The input/output port of a computer, where hardware meets soft-
ware, is the programmer’s inlet from the bay to the ocean. Without the
ability for external devices to communicate freely with the computer, a
program could operate only in a severely restricted and land-locked en-
vironment.

Computers can be purchased with most of the essential hardware
already designed and connected. It is not necessary for a programmer
to be an electronics engineer to operate external devices and write pro-
grams for input/output. Designers will appreciate the simplicity of input/
output on the 1802, and programmers will appreciate and make heavy
use of their work. Like the ports of the globe, the ports of a computer
are where worlds meet.

Taming the Wild Animal

Learning a processor’s instruction set is only one element in the
study of machine language programming. The author remembers his first
experience with a machine’s code. The feeling was similar to memorizing
large numbers of foreign words, arriving in the country where that lan-
guage is spoken, and being frustratingly unable to utter a single com-
prehensible sentence. The analogy, by the way, is not a fictitious inven-
tion.

Expressing solutions to problems using ingredients that will lead
to computer programs is a difficult hurdle for all beginners. The language
BASIC, in fact, was designed as a means for students to develop the
abstract concepts of computer programming. The concepts, not the
forms, of programming are the most difficult to come by.

A good way to build confidence in applying and working with com-
puters is the programming of games. Setting down the rules of play to
a game forces one to consider all the possibilities and express them
clearly. Teaching a friend the rules of a game is not unlike programming
a computer to perform a task.

The limitations of a computer are as important as its capabilities.
Both must be considered in the construction of programs that work.
Expert programmers, when approaching a solution that will be at-
tempted on a computer, keep their own thoughts within the realm of
computer operations.

It is not adequate to state that a checker piece should probably
capture an opponent if it can do so safely, then for the programmer to
sit down at the keyboard and write a checkers strategy for a computer.
For one thing, the word “probably” is not a good one to use when
expressing what a computer is to do. True, a random number generator
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may be able to inject the element of chance into a decision point, but the
computer cannot be expected to make any rational judgments about the
course it is to take.

But the computer can be programmed to make reasonable judg-
ments based on conditions that exist or do not exist. It is the reasoning
of the programmer, not the computer, though, that fuels the ability of
a computer and a computer program to operate. Computers are exten-
sions of the human mind, tools into which we may dismantle the thoughts
in our heads for further processing. Without a program, a computer is
no more than a big, dumb (but lovable) electronic animal waiting for
someone to come along and tell it what to do.

For some people, a computer will prove to be an unpredictable
untamed beast. Others will find an obedient companion willing to listen
patiently and help in whatever way it is able. Taming the computer, the
wild animal, is happily a skill that may be learned by anyone. Only those
people who approach programming with arrogance will fail in their ef-
forts and lose patience. The disciplined, determined person who has a
little imagination will soon find that computers are not so difficult to use
and understand. It is we who are complex and unfathomable, not the
machines we work with.

O 5 R

A good way to start any program is to begin by turning off the
computer. Pencil and paper are ingredients one and two for writing a
good program,.

Write down what it is you want the computer to accomplish for
you. Ask yourself if the computer is physically capable of performing the
task. (Having a machine to mow the lawn would be wonderful no doubt,
but one can hardly expect the old memory chips to march outside on
command and start munching blades of grass.) In other words, does the
hardware fit the intended application? That’s number one.

Is the project something you will be able to complete? Do you have
the knowledge needed to instruct the computer? This is one of the most
common sources of frustration among beginning programmers. Don’t try
to program the game of chess unless you are an expert in the game
yourself. This is not to discourage you from choosing challenging proj-
ects. Just pay attention to your own limitations as well as the com-
puter’s.

Now that the idea is down on paper, prepare a preliminary list of
all the parts and pieces that you feel will be needed for the program to
operate. Go through the list several times breaking down those items
that may still ‘be too complex.
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For example, take any card game. We may begin with the partial
list:

Go Fish—a Card Game
. Shuffle deck
Deal hands

. Give instructions
Play hand

The list does not need to be in order, but it should contain all the
needed elements, which our simple example certainly does not do. Look-
ing again at the list, we see how the entries may be further broken down
into subsections perhaps as follows:

1. Shuffle deck
a. Generate random number
b. Exchange random cards

2. Deal hands
a. Get a card
b. Transfer card to player hand (ete.)

U S

You will eventually find on your desk a list of all the most basic
elements that, when combined in specific ways, will play, in this example,
a rousing game of Go Fish.

These basic elements may now be programmed. Provided the func-
tions have been clearly defined, routines may be constructed to perform
the tasks. For example, GETCRD will return the next card in the deck.
That’s all it will do. The routine may be tested thoroughly almost with-
out regard for how it will eventually fit into the whole. When this is
done, the programmer may forget about the machinations of the routine.
In fact, the rest of the programming may proceed as if the instruction
GETCRD had been added to the computer’s instruction set.

Eventually, all these modules will begin to suggest the form the
final program will take, Many times an omission will now be discovered,
leading to a rewrite of the whole program from a different attack. Don’t
be discouraged if this happens and don’t be afraid to use another piece
of hardware as much as necessary—the wastebasket. The assembler in
Chapter 4 was born of two previous unsatisfactory (yet satisfying) at-
tempts.

This approach, called “bottom up programming,” will often lead
to the best design, producing very readable and understandable code.
Furthermore, the basic building blocks of a program may be general
enough to be used in other projects. Most programmers have closely
guarded libraries of those building blocks from which to build new pro-
grams.
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Inherent in the design of modular programs is the idea of subrou-
tines. A subroutine is a preferably simple, one-function program segment
that produces an effect needed by various other parts of the whole. Pro-
gram modules are usually written as subroutines so that they may be
utilized—*“called”—from any part of the main program.

When a subroutine is called from another part of the program,
control passes to that routine. After the subroutine is finished performing
its duty, control “returns” to the point at which the subroutine was
originally called. Graphically, subroutine action may be represented in
the way illustrated in Fig. 2-2.

START MAIN
r————* CALL SUB A
: MORE

MAIN

| PROGRAM
|
=

—_—— CALL SUB A =
| N
I MORE MAIN
|
——— CALL SUB A =
| v
| END
I MAIN
i PROGRAM
|
I SUBROUTINE A
|
|
ls ——{RETURN

Fig. 2-2.

Subroutine A is called from three separate places in the main pro-
gram. When subroutine A is finished, control returns to the point just
following the call to the subroutine. The subroutine does not need to
know from where it will be called, but when the call is made, that location
needs to be preserved so that eventually the program will be able to find
its way back.

There are three ways to make use of subroutines in 1802 software.
Without a question the standard call and return technique (SCRT) is the
best. This is fully described in RCA’s 1802 user’s manual MPM-210A.
It is the most complex of subroutine controllers and needs three regis-
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ters, usually R4, R5, and R6, dedicated to their jobs of calling and re-
turning from subroutines.

The MARK SEP technique may also be used. Like SCRT, it is
employed when subroutines themselves may call yet other subroutines
that may in turn call still others. Such a condition is called nesting, and
each subroutine call is said to add one deeper level of nesting to the
structure of the program.

A less common subroutine technique impossible with many other
processors is suggested by the 1802’s ability to use any register as the
program counter.

Using the same example in Fig. 2-2, suppose the main routine is
set to run with register R3 as the program counter. The address of
subroutine A is placed in register R4 and a SEP R4 is executed to call
the subroutine, which will then begin running with register R4 as the
program counter. This leaves register R3 pointing back to the main pro-
gram so that with a SEP R3 instruction at the end of subroutine A, the
main program will continue to run from where it left off, once again with
R3 as the program counter.

Subroutines to be called in this manner are best constructed with
the return at the top in the way the interrupt routine was written in the
last section. For example, here is a typical arrangement:

RETA: SEP R3 ;Return to main

SUBA: ( ) ;Begin here—
( ) ;  Subroutine code goes in
( 3 ;  these locations
BR RETA :Branch to exit

When the SEP R3 instruction is executed upon branching to loca-
tion RETA, SUBA’s program counter R4 will be left pointing once again
to the entry address of the subroutine so that future calls may be made
with SEP R4 instructions without having to reset the address in R4 each
time. This also has the advantage of assuring that R4 will always be
equal to some known fixed address, except of course while the subroutine
SUBA is actually running.

A disadvantage of the “SEP technique” is the inability to nest
subroutines. In order to get back from a call, the subroutine must know
which register was the program counter of the calling routine. In other
words, if a second subroutine running in R6 were to call the above sub-
routine, SEP R3 would return control not to the address in R6 but
wrongly to the address in R3.

One little-explored technique is to use two return commands, say
SEP R4 followed by SEP R3. Now the subroutine may run in either R4
or R3, returning via the opposite register automatically. (Obviously, set-
ting P to the current program counter register has no effect so that
either the SEP R3 or SEP R4 will function as a NOP depending on which
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register is the program counter at the time.) The author has used this
technique to construct “co-routines,” which differ from subroutines in
that one is never able to say which is the caller and which is the “call-
ee.”

O o

Stacks have been mentioned earlier as defined areas in memory
used to store information that will be needed later. Keeping the return
addresses on a stack following subroutine calls is a perfect use for this
structure. The SCRT subroutine controllers use the stack in this way to
“remember” how to re-thread the way back to the original main calling
point.

Railroad cars on sidings, piles of dishes, bricks, and other more or
less stackable items have been used to describe the structure of a stack
in computers. To be original, the author adds here his own analogy,
although it resembles the railroad car explanation, one of the best.

Picture the long, one-car-wide driveway of a typical suburban house
whose occupants have invited several of their friends over for a party.
One by one the guests arrive in their automobiles and one by one each
arrival pulls his vehicle into the driveway immediately behind a prede-
cessor if there was one. Obviously (driving over the lawn is forbidden),
the last car to pull in will have to be the first one to pull out. Need I
mention who will decide to leave the party early?

In a computer, a stack is controlled by a memory pointer and in the
1802 processor register R2 is almost always devoted to this function.
The area in memory must be set aside for use as the stack, and the base
address of the area, the endmost memory location, must be set in R2
sometime early in the program. The stack grows and shrinks as needed
by decrementing and inerementing the stack pointer.

When X equals 2, the instruction STXD may be used to “push” a
byte onto the stack. R2 is decremented by this instruction so that it
points to a free location where another byte may be pushed. To “pop”
or remove the last entry from the stack, an IRX is first performed fol-
lowed by LDX or LDXA.

Note carefully the distinction in popping bytes off the stack. When
successive bytes are to be popped, LDXA will automatically advance R2
(as long as X = 2) to the next element on the stack. The last pop, how-
ever, must be LDX, leaving R2 addressing the memory location where
a byte may next be pushed. When bytes are popped off the stack, they
are usually considered to be gone even though the values do not change
in memory.

By following this convention, R2 is assured of always addressing
the empty topmost byte of the stack. It may be used by all routines
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provided each routine is responsible for removing bytes it had pushed
onto the stack. Sometimes, STR R2 may be used to place a byte tem-
porarily onto the stack. Usually one operand may be set up for an arith-
metic operation in this way. However, unless the stack pointer is dec-
remented, the top of the stack is subject to change on the execution of
the next STXD instruction. Remember, to avoid a runaway stack, what
goes on the stack must come off—and no more.

Two important but surprisingly ignored features of stack control
are overflow and underflow. Although the RCA manual does not include
tests for these conditions in discussing SCRT subroutines, this would be
a highly desirable feature to include in an operating system. When the
stack is full, overflow occurs on attempting to push another byte onto
the stack. Underflow happens when the attempt is made to pop an empty
stack. Both conditions are easily tested for by watching the address in
register R2 (or other register if chosen), being sure that it remains within
the defined memory area for the stack. (A large system with more than,
say, 8K of memory may benefit from a full memory page dedicated to
the stack. This would permit extensive future expansion of the system.)

Other’ stack-like structures are the queue (“cue”) and the deque
(“deck”). A queue allows entries from one end but exits from the other.
Let’s say another party is being held at a different house, this one with
a semicircular drive with both ends opening onto the street. Restricting
the cars to forward motion resembles the action of a queue or a “first-in,
first-out” stack. Whoever arrived first will be the first to pull out of the
drive. Now guess who wants to leave early!

An obvious improvement is the deque, where entries and exits may
occur at both ends. Again the action resembles the circular drive but
with no restrictions on direction of movement. Of course, in order to get
the car out of the garage in the center . . .

In the Appendix, a full control package for handling a deque is
included. Unlike the analogy of cars, bytes do not have to be shifted up
and down to accept new data and to give up stored information. Instead,
two pointers are kept to the ends of the stored data. These pointers will
proceed to run away from and go toward each other as data enters and
leaves the deque. Overflow and underflow notices are given when ap-
propriate.

16 & R &

Earlier, a basic loop structure was presented. Such loops will find
their way into most programs. Repeating the same sequences over and
over is one of the things a computer does best, and it will probably take
less memory space to use a loop than to write out the sequence in a
straight line the number of times that function is to be performed.
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However, loops always run more slowly than a program written
redundantly in a straightforward manner. Practical limitations will re-
strict the programmer to using loops, but sometimes a loop may be un-
rolled to gain speed. For instance, an earlier example used a loop to store
zeros in eight successive memory locations. We could just as well have
written eight STXD instructions in a row (with X set to the addressing
register). This executes faster than the loop and in fact takes up no more
room if the mechanics to control the loop are included! Be especially
careful not to use a loop when a straightforward sequence will be shorter.
That would be a waste of both space and time.

Loop structures may also become more complex by programming
loops within loops. As with subroutines that call other subroutines, this
is called “nesting.” Proper nesting is essential to these complex loop
structures. For example, Fig. 2-3 shows the right and the wrong way
to nest three loops together.

Corresponding to Fig. 2-3, the following program demonstrates
how a loop structure three levels deep could be written. RD.0, RE.O0,
and RF.0 are used as the loop counters. A good rule to follow is to test
all loop counters at exit points in the reverse order they are set at the
entries to the loops. Also be careful not to branch back to the setup
points of the loop. This is quite a common error to watch for. The result
is usually an endless loop.

— -
START START
LOOP ZE 1 LOOP 1
— -
START START
LOOP 222 LOOP 222
—i
START START
LOOPA3 LOOP X2
END END
LOOP X3 LOOP 2 ?
END END
LOOP 22 LOOP Z£?
END END
LOOP 1 LOOP 21
RIGHT WRONG

Fig. 2-3. Two ways to construct a loop. One works and the other
one doesn’t.
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LDI $4 :Load 04 into D
PLO RD ;:RD.0 = 4 = Loop #1
L1: ( ) ;  code in Loop #1
( ) : may go here
LDI $10 ;Load 10 into D
PLO RE ;RE.0 = 10 = Loop #2
L2: ( ) : code in Loop #2
( ) ; may go here

LDI $FF ;Load FF into D

PLO RF ;RF.0 = FF = Loop #3
L3: ( ) ;  all code in Loop #3

( ) ;  may go here

DEC RF ;Decrement loop count #3

GLO RF ;Test loop count #3

BNZ L3 ;If # 0, branch to Loop L3
( ) ;  more code in Loop #2
( ) ; may go here
DEC RE ;Decrement loop count #2
GLO RE ;Test loop count #2
BNZ L2 :If # 0, branch to Loop L3
( ) ;i more code in Loop #1
( ) ;  may go here
DEC RD ;Decrement loop count #1
GLO RD ;Test loop count #1
BNZ L1 ;If # 0, branch to Loop L1
;(continue on RD.0 = RE.0 =
; RF.0 =00

Each of the nested levels has been indented to show the structure
of the nesting. You may want to write out your loops in this way including
the arrows to avoid accidentally crossing from one loop up into another.

Even more complex structures are possible, of course, although you
may be limited by the number of available registers for loop counters.
Usually, however, the nesting will not need to go very deep.

An advantage of this loop construction is that the loop counter will
always equal zero at the end as long as the loop is allowed to terminate
normally. If the loop is terminated early, the loop count is assured not
to equal zero. This may provide a handy automatic “flag” to another
program section, indicating that some condition caused the loop to ter-
minate before running its course. That part of the program would need
only to test the loop count in the register to know what happened.

Note also that only RD.0, RE.0, and RF.0 are altered by the loop
“housekeeping” chores. Their high eight-bit counterparts RD.1, RE.1,
and RF.1 do not change with this type of looping, and the programmer
may trust these eight-bit halves to hold the results of operations, perhaps
the very results generated inside the loops themselves. Other loop con-
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tructions may not allow this, particularly if the loop count goes past zero
before the loop is terminated.

To use the entire 16 bits of a register as a loop counter, each half
of that register must subsequently be brought into D for testing. The
following routine demonstrates this type of looping by erasing 4096 mem-
ory locations from 2000 to 2FFF'.

;Load the address 2FFF

LDI $2F ;  into register RE
PHI RE :
LDI $FF x
PLO RE :
LDI $10 ;Load loop count of 1000 hex
PHI RF ;i (=4096 decimal) into RF
LDI $0 :
PLO RF ;
SEX RE Set X = E

LOOP: LDI $0 ;Load 00 byte into D
STXD :Store at RE & decrement
DEC RF ;Count # loops
GLO RF :Get loop count low
BNZ LOOP ;If # 0, branch to continue
GHI RF ;Get loop count high
BNZ LOOP ;If # 0, branch to continue
RETN ;Return from subroutine

There are better ways to do this. Can you think of one? (See An-
swers to Exercises for a suggestion, page 140.) If the above routine is
followed, these conditions exist: RE = 1FFF and RF = 0000. Note that
testing RF.0 before RF.1 keeps the loop as short as possible.

O O o

Interpreters are programs that run other programs. They belong
to the class of “higher-level languages,” a description of the distance
between the programmer and the machine. With machine language, the
programmer instructs the computer on a one-to-one level, as if the cap-
tain of a ship were firing his own boiler. Interpreters move the program-
mer away (higher) from the machine’s level of understanding.

An interpreter translates instructions into calls to the necessary
routines that perform desired functions. Using the same maritime anal-
ogy, interpreters more closely resemble real life. The captain says “ship
out,” and the first mate tells the boiler room crew to start shoveling.

With very few exceptions, interpreters are written in machine lan-
guage. All computer languages, however, must eventually filter down to
the machine’s level for execution. It may appear that a computer un-
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derstands a GOTO instruction in the higher-level language BASIC, for
instance, but it is really the interpreter program that understands and
in turn tells the computer what to do.

The 1802 microprocessor has a structure that blends in well with
the idea of interpretive languages. An advanced application may be ap-
proached by actually designing a higher-level language to perform var-
ious tasks and then using that language to program the computer.

Such an interpreter will be highly modular, with each function care-
fully designed and programmed. Instead of a main routine to control the
calling of each subroutine module, the addresses of the subroutines them-
selves are kept in a list in the order the programmer wants them to be
executed. Then all that needs to be done is to take each address, insert
it in a register, and execute an SEP instruction to call the proper routine.

The program that accesses the address list and calls the subroutines
is functioning as an interpreter. It oversees the entire operation of the
program. The biggest advantage is the ability the programmer has to
make changes without altering anything more than the order of the sub-
routine address list.

One popular 1802 language that uses this technique is named Chip-
8 and was developed by Joe Weisbecker for the Cosmae VIP computer.
Chip-8 contains 31 graphics and game-related instructions with which
hundreds of computer games have been written. The entire Chip-8 in-
terpreter fits in less than 512 bytes—two memory pages—and even a
small 2K computer may be programmed to execute extremely sophisti-
cated programs. By comparison, a small BASIC interpreter may require
a minimum of 8K of memory.

When many applications will use the same structure, an interpreter
may simplify the approach, allowing new programs to be written that
are dissimilar only in output. In many cases, these programs will be
shorter—and therefore cheaper in terms of memory—than comparable
solutions. The compression results from the elimination of subroutine
calls and the high degree of modularity imposed on the design.

0o o O

Machine language programming on the 1802 is easy to grasp and
fun to work with. Inexpensive computers that use the 1802 processor
are opening the world of computing to a public that is just beginning to
discard a Wizard of Oz view of programmers and their machines.

Soon millions of people will be programming and using home com-
puters for business, personal education, and just for fun. Programming,
even in the ominous-looking machine language, need not be an obstacle
to anyone with the simple desire to learn. Understanding the workings
of a computer is understanding the forces that will shape the future.

It’s a future whose history has just begun.
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1802 Instruction Set

The Instruction Set

To become fluent in any language, you must study and memorize

the vocabulary. To program in a computer’s machine language, you must
have more than a simple familiarity with the computer’s instruction set.

The following section details each of the 1802's instructions. The

commands are presented in various forms, and to understand how to
study the instructions, these forms are defined here.

i 2

2.

Op code—Hexadecimal value, an eight-bit binary byte. The actual
instruction as it would be stored in a computer’s memory.
Mmnemonic—A two-, three-, or four-letter code that describes the
instruction’s operation. Usually this is a contraction formed from
the definition.

. Definition—A short deseription of the instruction’s operation. The

pronunciation of the mmnemonic.

. Symbolic action—A mathematical-like representation of the oper-

ation.

. Discussion—Details, hints, and further description of the opera-

tion.

. Programming example—An example of how the instruction would

appear, and its action in an actual program example.

Memorizing the instruction set and all of its forms is not enough for

proficiency in the machine’s language. If there is anything you do not
understand about an instruction, the best way to discover its intricacies

73
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1802 Instruction Codes

No. Page No. Page
Mnemonic Op code ecyeles  No. Mnemonic  Op code cycles  No.
ADC 4 2 91 LDXA 72 2 90
ADCI 7C 2 95 LSDF CF 3 104
ADD F4 2 107 LSIE CcC 3 103
ADI FC 2 110 *LSKP C8 3 101
AND F2 2 106 LSNF CT7 3 101
ANI FA 2 109 LSNQ Ch 3 100
B1 34 2 81 LSNZ C6 3 101
B2 35 2 83 LSQ CD 3 103
B3 36 2 83 LSZ CE 3 104
B4 37 2 83 MARK 79 2 93
*BDF 33 2 81 *NBR 38 2 83
*BGE 33 2 81 *NLBR c8 3 101
*BL 3B 2 85 NOP C4 2 100
*BM 3B 2 85 OR F1 2 106
BN1 3C 2 85 ORI F9 2 109
BN2 3D 2 85 ouT 6N 2 87
BN3 3E 2 85 PHI BN 2 98
BN4 3F 2 85 PLO AN 2 98
*BNF 3B 2 85 REQ TA 2 94
BNQ 39 2 84 RET 70 2 89
BNZ 3A 2 84 *RSHL 76 2 96
*BPZ 33 2 81 *RSHR E 2 92
BQ 31 2 80 SAV 78 2 93
BR 30 2 80 SD Fb 2 108
BZ 32 2 81 SDB 5 2 91
DEC 2N 2 79 SDBI 7D 2 95
DIS 71 2 89 SDI FD 2 111
GHI 9N 2 97 SEP DN 2 104
GLO 8N 2 97 SEQ 7B 2 94
IDL 00 2 Vi SEX EN 2 105
INC IN 2 79 SHL FE 2 111
INP 6N 2 87 *SHLC TE 2 96
IRX 60 2 87 SHR F6 2 108
LBDF C3 3 100 *SHRC 76 2 92
LBNF CB 3 103 *SKP 38 2 83
LBNQ C9 3 102 SM F7 2 108
LBNZ CA 3 102 SMB 7 2 92
LBQ C1 3 99 SMBI F 2 96
LBR Co 3 98 SMI FF 2 111
LBZ Cc2 3 99 STR 5N 2 86
LDA 4N 2 86 STXD 73 2 90
LDI F8 2 109 XOR F3 2 107
LDN ON 2 i XRI FB 2 110
LDX FO 2 106
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for yourself is to write a short program using the command. The simpler
the better. For example, count up to two and stop, or logically “AND”
two values together and stop. Comparing what actually happens to what
you think should happen will often give you a clue to the instruction’s
action. Some debugging tools and single-stepping programs exist on the
market that could make such experimentation easier.

To many beginners, the symbolic action of an instruction seems the
most difficult to grasp. However, when discussing a machine language
all computer books use pseudomathematical representations such as
these. The equations do look confusing, but serious programmers realize
the importance of presenting the action of an instruction in an unambig-
uous and concise form.

Unfortunately, there is little agreement on the syntax used in this
symbolic representation and each machine code may be described using
symbols that do not necessarily conform to those used for a different
processor. Even RCA departs from the norm on the programming card
supplied with their Cosmac VIP computer products. The following sec-
tion sticks as closely as possible to recognized symbolic representation
even though this may differ from RCA’s supplied version. All mnemon-
ics, op codes, and most definitions are those recommended by the man-
ufacturer. The discussion is original and has not appeared in print else-
where. An attempt has also been made to use real program examples
such as those frequently encountered in software.

The Syntax

P—four-bit register designating which of the 16 general-purpose regis-
ters is to be used as the program counter.

Q—single-bit internal flip-flop. May be on (=1) or off (=0).

X—four-bit register designating which of the 16 general-purpose regis-
ters is to be used as the stack pointer.

T—eight-bit register used during interrupts to preserve the values of
the X and P registers.

D—the accumulator; the data register.

IE—interrupt enable flag. If IE=1, then interrupts are enabled. If
IE=0, then no interrupts will be acknowledged.

N—a hexadecimal digit. Ex: 5N would include the values 50—5F.

()—indirect reference. Ex: R(X) = the register specified by X.

M-—memory reference. Ex: M(R(X)) = byte addressed by the register
designated by X. M(R(P)) = byte addressed by the program
counter register.

+—the usual math operator.

——the usual math operator.

=—the usual math operator.

<——arrow. The object to the left of the arrow accepts or becomes the
object to the right. Note that RCA reverses the direction of the
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arrow. It is important to realize that the arrow symbolizes an action
taking place. It should not be replaced by the equals sign as it is
in the higher level language BASIC, for instance. “Q <« 0” and
“Q = 0” are not the same thing. The first describes the action,
“Q becomes zero,” and the second makes a statement about the
condition of Q. Note that the second would be a valid deseription
of Q following the action of “Q « 0.”

.N—the period. When N=0, this denotes the least significant eight bits
of a 16-bit register. When N=1, the expression denotes the most
significant eight bits of a 16-bit register. Ex: R(2).1 = the high or
leftmost eight bits of register 2,

MSB/LSB—most/least significant bit.

BUS—eight bidirectional data lines used for transferring data to and
from the processor.

;—separates possibly unrelated actions oceurring with the same instruec-
tion. Read as “also.” In programming examples, signifies that a
comment follows.

Argument—byte or bytes immediately following an instruction op code.
Usually data or an address to be used by the instruction.

EFN—one of the 1802's four flag lines, EF1, EF2, EF3, and EF4,
which may be set or reset by external sources only.

| 00 | IDL | Idle or wait for interrupt or DMA request

Symbolic Action
R(P) <= R(P)—1; Bus « M(R(0)) until an interrupt or DMA request

Discussion

When executed, this instruction halts the program, changing no
registers or memory bytes. Upon sensing an external request for an
interrupt or DMA action (direct memory action), the program continues
with the value of the memory byte addressed by register R(0) placed on
the data bus.

A typical use of IDL is to sync the output of a memory refresh
block to those times when the information in the block is in a stable or
final form. In a system that will not make use of interrupt or DMA action,
the IDL may be used as a HALT instruction.

Programming Example

0200 00 IDL ; Wait at this address for an interrupt or
DMA, then continue

[ ON | LDN | Load via N
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Symbolic Action
D <« M(R(N)) for N # 0

Discussion

The memory byte at the address specified by register N is placed
in the D register. The old value of D is destroyed by this action. The
memory byte loaded and the register that addresses this byte are not
changed in any way. Bytes addressed by registers 1 through F may be
loaded into the D register by this action. Note that the op code 00 is an
IDL instruction, not a “Load via R(0)” command.

Programming Example

0201 05 LDN Rb ;Load D register with byte addressed by
register R(5)

| IN | INC |  Increment register N

Symbolic Action
R(N) <« R(N)+1

Discussion

Register N is increased by the value of 1. The entire 16-bit register
is affected by the action of this instruction without the programmer’s
having to worry about overflow or carries between the lower and higher
eight-bit parts of register N.

This is one of the few direct 16-bit operations of the 1802 processor
providing a way either to count from 0000 to FFFF hexadecimal (0—
655635 decimal) or to address lists anywhere in programmable memory.

INC is frequently used to count the occurrences of some operation,
address sequential values in memory, or form an essential part of a tim-
ing loop that would delay the program until register N was equal to some
specific value.

Registers act in a “wraparound” fashion when acted on by the
INC instruction. Incrementing any register past the highest possible
value of hexadecimal FFFF will result in 0000 in the specified register.
Note that the one-bit overflow register DF is never affected by the INC
instruction.

Programming Example

0202 IF INC RF ;Add 1 to 16-bit value in register R(F)
| 2N | DEC | Decrement register N
Symbolic Action

R(N) < R(N)-1
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Discussion

Register N is decreased by the value of 1. The action is similar to
INC except that counting past 0000 will now result in FFFF hexadecimal
in the specified register. Again, all 16 bits of the register may be affected
by the DEC instruction, and the overflow register DF is never affected
by the operation.

Programming Example

0203 2A DEC RA ;Subtract 1 from the 16-bit value in reg-
ister R(A)

[ 30 [ BR | Short branch

Symbolic Action

R(P).0~ M(R(P))

Discussion

Requires a one byte argument. The byte immediately following the
instruction’s op code replaces the lower eight bits of the program counter
register. This will cause an unconditional jump to occur to the specified
address.

Using the BR restricts branches to within the same memory page
indicated by the high eight bits of the program counter, which will never
change as a result of this instruction.

Allows the design of “page relocatable code,” a program section
that will operate regardless of which memory page it happens to reside
in.

Programming Example

0204 30 6C BR ;Branch to memory location 026C
[ 31 | BQ | Short branch on Q=1

Symbolic Action

If Q=1 then R(P).0 < M(R(P)) Else R(P) < R(P)+1

Discussion

Requires a single-byte argument. Branch will be taken or not taken
depending on the value of the Q flip-flop register. If Q=1, then the
branch will be taken exactly as if the instruction were a BN. If Q=0,
however, the program continues as if the BQ instruction were not there.
Q is not changed.

Programming Example
0206 31 D0 BQ ;If Q= 1 then branch to memory location
02D0
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| 32 | BZ |  Short branch on D=0

Symbolic Action
If D=0 then R(P).0 « M(R(P)) Else R(P) « R(P)+1
Discussion

Requires a single-byte argument. Branch will be taken or not taken
depending on the value of the D register. If the D register is equal to
zero, then the branch will occur. If D is not zero, then the program will
continue as if the BZ instruction were not there. D is not changed.

Programming Example

0208 32 01 BZ ;If D=0 then branch to memory location
0201
33 BDF Short branch on DF=1
33 BPZ Short branch if positive or zero
33 BGE Short branch if greater or equal

Symbolic Action
If DF=1 then R(P).0 « M(R(P)) Else R(P) « R(P)+1

Discussion

Requires a single-byte argument. If the value of the one-bit over-
flow/carry register DF is equal to 1, then the branch will be taken to the
specified address. If DF is equal to 0, then the program continues as if
the BDF instruction were not there. DF is not changed.

Usually this instruction will follow an arithmetic operation of some
kind, and program flow will be altered or not depending on an overflow
oceurring from that operation. BPZ and BGE, while functionally iden-
tical, are potentially ambiguous and should be used with care.

Programming Example

020A 33 00 BDF ;If D=1 then branch to memory loca-
tion 0200
| 34 | Bl |  Short branch on EF1=1

Symbolic Action
If EF1=1 then R(P).0 < M(R(P)) Else R(P) « R(P)+1
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Discussion

Requires a single-byte argument. If the flag line EF1= 1, then the
branch will be taken to the specified address. Otherwise, the program
continues on to the next instruction.

This and the following similar flag line conditional branch instruc-
tions allow program flow to be altered depending on the state of an
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external signal. If a flag line is = 1, then a signal is being applied to that
line by an external source. If no signal is being applied, then the flag line
= 0. The flags do not retain their values after a signal has been applied
and so do not have to be reset. However, the sensing of the signal must
occur simultaneously with that signal—a flag line can tell if a condition
exists but can describe nothing about conditions that may have existed
and stopped before.

Programming Example

020C 34 FE BI1 ;If EF1=1 then branch to memory lo-
cation 02FE
35 B2 Short branch on EF2=1
36 B3 Short branch on EF3=1
37 B4 Short branch on EF4=1

Symbolic Action
If EFN=1 then R(P).0 < M(R(P)) for N=2,3,4 Else R(P) — R(P)+1

Discussion

Identical to B1, short branch on EF1 except that flag lines 2, 8, or
4 are those tested.

Programming Examples

020E 35 68 B2 ;If EF2=1 then branch to memory lo-
cation 0268
0210 36 01 B3 ;If EF3=1 then branch to memory lo-
cation 0201
0212 37 OE B4 ;1If EF4=1 then branch to memory lo-
cation 020E
38 NBR No short branch
38 SKP Skip next byte
Symbolic Action

R(P) < R(P)+1

Discussion

When executed, causes the program to skip over the next byte.
Note that there are two mnemonies associated with this instruction, but
the action in both cases is identical. The different mnemonics refer to the
intended use of the instruction.
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NBR assumes that the following byte is an address the branch to
which is never taken. This could be used to replace a different branch
instruetion, removing its effect from the program while having to make
only a single-byte change.

SKP assumes nothing about the following byte and is frequently
used to begin a loop by skipping into that section of code. In that case,
the byte skipped would most likely be an instruction that is not to be
performed on the first pass of the loop.

The distinetion between SKP and NBR becomes more significant
when using an assembler program where the output would be different
depending on which mnemonic was used. The action of both instructions
is always identical, however.

Programming Exvamples

0214 38 T7 NBR ;Do not branch to address 0277

0216 38 SKP ;Skip the next byte, probably an instruc-
tion

[ 39 [ BNQ | Short branch on Q=0

Symbolic Action

If Q=0 then R(P).0 < M(R(P)) Else R(P) < R(P)+1

Discussion

Requires a single-byte argument. Opposite in action to a BQ in-
struction. In this case, the branch is taken only if the Q flip-flop is set
to 0 (off). If Q=1, then the next instruetion in line will be performed. Q
is not changed by this instruction.

Programming Example

0217 39 17 BNQ ;If Q=0 then branch to memory location
0217. (On Q= 0, this example would halt
the program!)

| 8A | BNZ |  Short branch on D#0

Symbolic Action
If D+#0 then R(P).0 « M(R(P)) Else R(P) < R(P)+1

Discussion

Requires a single-byte argument. The BNZ is opposite to the BZ
instruction in effect.

If the value in the D register is not zero, regardless of what that
value is, then the branch will be taken to the specified address. Other-
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wise, the next instruction in line will be performed as if the BNZ instruc-
tion were not there.
The value of D is not changed.

Programming Example

0219 3A 17 BNZ ;If D#0 then branch to memory location
0217
3B BNF Short branch on DF=0 (“Not” DF)
3B BM Short branch if minus
3B BL Short branch if less

Symbolic Action
If DF=0 then R(P).0 < M(R(P)) Else R(P) « R(P)+1

Discussion

Requires a single-byte argument. Opposite to BDF instruction. If
the value of DF is zero, then branch to the specified address. Otherwise,
perform the next instruction in line as if the BNF instruction were not
there.

The value of DF is not affected by this instruction.

BM and BL, while functionally identical, are potentially ambiguous
and should be used with care.

Programming Example

021B 3B FF BNF ;If DF=0 then branch to memory loca-
tion 02FF
3C BN1 Short branch on EF1=0
3D BN2 Short branch on EF2=0
3E BN3 Short branch on EF3=0
3F BN4 Short branch on EF4=0
Symbolic Action

If EFN=0 then R(P).0 < M(R(P)) for N=1,2,3,4 Else R(P) < R(P)+1

Discussion

Require single-byte arguments. Opposites to B1, B2, B3, and B4
instructions.

If the specified flag line is =0 (i.e., no signal is being applied ex-
ternally to that line), then take the branch to the specified address.
Otherwise, perform the next instruction in line.

The flag lines are not changed in any way by these instructions.
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Programming Examples

021D 3C 00 BN1 ;If EF1=0 then branch to memory lo-
cation 0200

021F 3D 01 BN2 ;If EF2=0 then branch to memory lo-
cation 0201

0221 3E 02 BN3 ;If EF3=0 then branch to memory lo-
cation 0202

0223 3F 1D BN4 ;If EF4=0 then branch to memory lo-

cation 021D

[ 4N | LDA |  Load D via N; advance N

Symbolic Action
D « M(R(N)); R(N) < R(N)+1

Discussion

The byte at the memory location addressed by register R(N) is
loaded into the D register. Following this, the 16-bit value in register
R(N) is incremented by 1. Except for the increment of R(N), this in-
struction is identical to LDN. However, in this case a byte may be loaded
into D via R(0) where no such capability exists for LDN.

An important use of the LDA instruction is moving blocks of mem-
ory or sequentially examining bytes in a list. With the single-byte in-
struction, bytes may be loaded into D via an address in any register and
that register is sure to point to the next byte in the list following the
LDA.

The following two instructions are identical in effect to the LDA
programming example below.

0225 0C LDN RC ;Load D via register R(C)

0226 1C INC RC ;Increment register R(C)

Programming Example

0226 4C LDA RC ;Load D via register R(C); advance reg-
ister R(C) by 1

| BN [ STR | Store via N

Symbolic Action
M(R(N)) <D

Discussion

The value of the D register is stored at the memory location ad-
dressed by the 16-bit value in register R(N). Whatever was at this mem-
ory location is now replaced by the current value in the D register. The
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value in the D register is not changed nor is the address in register R(N)
altered in any way.

You may view this operation as the opposite in effect of the load
instruction LDN. However, all 16 registers may be used with STR.

An important use of STR is to set certain memory bytes to some
required value or to store the value of the D register somewhere for use
later on. STR is also used frequently in stack operations in which the
programmer does not want to change the value of the addressing reg-
ister.

Programming Example

0226 50 STR RO ;Store value of D at memory location
specified in register R(0)

| 60 | IRX | Increment register X

Symbolic Action
R(X) « R(X)+1

Discussion
Whichever 16-bit register is specified by X is incremented by the
value of 1. If X=4 for example, register R(4) would be incremented by
1. In that case, the instruction INC R4 would have an identical effect.
IRX is most often used during stack operations. It is also handy in
situations in which the register to be incremented may not be the same
one during each execution of the IRX.

Programming Example

0227 60 IRX ;Increment register R(X) by 1 (If X=2,
then R(2)=R(2)+1)

6N ouT Output for N=1to 7
6N INP Input for N=9 to F
Symbolic Action

For N=1to 7: BUS « M(R(X)); R(X) « R(X)+1

For N=9 to F: M(R(X)) « BUS; D « BUS

Also: the 1802 “N” lines N0, N1, N2 are set equal to the last 3 bits of
the N in the code 6N.

Discussion

These two instructions are presented together to emphasize the not
so obvious differences between the two. Instructions 61 through 67 are
used to output bytes from the computer, while 69 through 6F are in-
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Q—{ 4 37— DMA OUT
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Vee — 18 25— MAO
N2 — 17 24— EFT
NI — 18 23— EF2
NO — 19 22— EF3
Vss —{20 2| — EF4 Terminal assignment diagram for the CDP1802 COSMAC
TOP VIEW Mieroprocessor. (Courtesy RCA Corporation)

structions that will input bytes to the computer. They are important links
to the outside world, allowing transferral of data to and from communi-
cations devices, keyboards, or terminals, possibly to and from other com-
puters. These devices would be hooked up to the computer’s data bus,
used in this case as a highway between device and computer.

OUT places the byte addressed by the register specified by X onto
the data bus. That register is then automatically incremented by 1 before
the next instruction is executed.

INP obtains whatever value happens to be on the data bus and
stores that value at the memory location specified by the register des-
ignated by X. The input value is also placed into the D register replacing
whatever value happened to be there before. R(X) is not changed by
INP.

Please note that the two instructions are definitely not opposites
of each other, although their actions seem to be simple changes in direc-
tion. Realizing the differences between OUT and INP may happily save
you from some awful debugging sessions that have awed the author.

Also note that the op code 68 is missing from this book. No valid
instruction exists for this op code.

Besides the transferral of data in and out of the computer, INP and
OUT cause three special lines in the 1802 to be set equal to the value of
the last three bits of the N in 6N. In this way, many devices may use
the same data bus for sending and receiving bytes. The configuration of
the three N lines may be used to select one device over another for the
input or output and are sometimes used to simply toggle a device into
action.

Programming Examples
0228 63 OUT ;Output byte addressed by R(X). In-
crease R(X) by 1. N0=1, N1=1, N2=0
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0229 6A INP ;Input byte to address specified by R(X).
Also place this byte in D. N0=0, N1=1,
N2=0.

| 70 | RET | Return

Symbolic Action

X,P) « M(R(X)); R(X) < RX)+1; IE « 1

Discussion

The eight-bit byte addressed by R(X) is broken into two parts; the
MSB (four bits) being set into the X register and the LSB (four bits) set
into the P register. Following this, R(X) is advanced by 1, and the in-
terrupt enable flag IE is set to 1, allowing interrupts to be acknowledged.

Although RET may be used as a subroutine control instruction, it
is most often seen as a return from an interrupt routine. Presumably,
the interrupt’s first instruction placed X and P at the byte addressed by
R(X) by a MARK or SAV. The subsequent use of RET would then
restore the values of X and P preserved in this way.

Note that an acknowledged interrupt automatically sets IE=0 (dis-
abled).

Programming Example

022A 70 RET ;Return from interrupt. Restore X,P,
advance R(X), and set IE=1 to allow
future interrupts to occur.

| 71 | DIS | Disable

Symbolic Action
X,P) < M(R(X)); R(X) < R(X)+1; IE <0

Discussion

Identical in every way to RET except for the condition of the in-
terrupt enable flag IE. When DIS is executed, this flag is set to 0, and
future interrupts will not be acknowledged until the flag is again set
equal to 1.

Although it is possible to use DIS as a subroutine control instrue-
tion, it will more often be seen (as RET) in interrupt handling routines.
Note that X and P are restored from the top of the stack addressed by
R(X). This assumes that a previous use of the MARK or SAV instruction
had been used.
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Programming Example

022B 71 DIS ;Return from interrupt, restore X,P,
then advance R(X) and disable future
interrupt action by setting IE=0.

| 72 | LDXA | Load via X and advance
Symbolic Action

D « MRX)); R(X) « R(X)+1

Discussion

Used in stack handling and as a general-purpose load instruction,
LDXA finds its way into just about any program.

X is assumed to be set to the hex number of any one of the 16
general-purpose registers. Execution of the LDXA will cause the byte
addressed by that register designated by X to be loaded into the D
register. Following this action, that 16-bit register value is incremented
by 1. This provides a way to sequentially load values into the D register
and to “pop” values from a stack where the exact location of the value
needed is not known.

The old value in D is destroyed by the LDXA. X is not changed
nor is the byte that was addressed by R(X) before that register was
incremented. However, in standard stack procedures, once a byte is
“popped” off the top of the stack, it should be considered undefined
even though the LDXA did not actually change this value.

Programming Example

022C 72 LDXA ;Load via X and advance—pop stack
into D
| 73 | STXD | Store via X and decrement

Symbolic Action
M(R(X)) <= D; R(X) < R(X)-1

Discussion

Opposite in effect to LDXA, the instruction STXD is normally used
to place values in a memory area known as a stack. X is set to a hex
number 0-F designating one of the sixteen 16-bit general-purpose reg-
isters. That register contains an address of a memory location. On exe-
cution of the STXD, the current value of the D register is stored at that
memory location. Then the 16-bit address in the register is decremented
by 1.
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The value in D is not changed by the STXD. X is also not altered. '
Only the byte at the memory location and the register value addressing
that location will change. During stack handling, an STXD instruction is
said to “push” a value onto the stack.

Programming Example
022D 73 STXD ;Push D; Save the value of D at the

memory location addressed by R(X),
then decrement R(X).

| 74 | ADC ] Add with carry

Symbolic Action
DF, D « M(R(X))+D+DF

Discussion

The byte addressed by the register designated by X is added to the
value of the D register. The value of the DF overflow/carry flag is also
added at the same time. The result of the addition is stored in the D
register, replacing its previous contents. If overflow occurs, DF will be
set equal to 1; otherwise DF will be set equal to 0.

The byte added to D is unchanged in its memory location. X is not
altered, nor is the address in the register designated by X changed in
any way. Only D and DF are changed by the ADC.

Programming Example

022E 74 ADC ;Add byte at M(R(X)) plus DF to D reg-
ister, storing the result in D and setting
DF to indicate overflow if the result is
larger than eight bits.

[ 75 | SDB | Subtract D with borrow

Symbolic Action
D,DF « M(R(X))-D—DF

Discussion

The value of the D register is subtracted from the byte addressed
by the register designated by X. The complemented value of DF (the
line above DF means “NOT DF”) is also subtracted at the same time
and is presumably the result of a borrow or no borrow from a previous
subtraction. The result of the subtraction is placed in the D register,
replacing its previous contents. DF indicates whether or not a borrow
was needed.
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The byte addressed by R(X) is not changed, nor is the address in
the register R(X) changed in any way. Only D and DF are altered by
the SDB.

Programming Example

022F 75 SDB :Subtract D from the byte at M(R(X)),
taking the value of DF as a possible bor-
row from a previous subtract. Store the

answer in D. Set DF to indieate if a bor-
row occurred.

76 SHRC Shift right with carry
76 RSHR Ring shift right
Symbolic Action

Shift D right one bit; MSB(D) « DF; DF < LSB(D)

Discussion

The value in D is shifted right so that each of the eight bits in D
moves one bit position to the right. The previous value of DF moves to
the leftmost bit position in D. The rightmost bit of D moves into DF. All
of these operations occur simultaneously. No bits are changed by SHRC,
only their positions.

Note that two mnemonics are associated with this instruction. Both
operations are identical but the intended use may differ.

In double-precision shifting, where DF contains a bit value from a
previous shift operation, an SHRC may take part in a simple integer
divide by 2.

Programming Examples

0230 76 SHRC ;Shift right, shifting old DF in at left and
shifting old LiSB into DF. Finish divide
by 2.

0231 76 RSHR :Shift right circularly. Move LSB of D

into DF for testing while preserving old
DF value in MSB of D.

[ 77 | SMB |  Subtract memory with borrow

Symbolic Action
D,DF « D-M(R(X))-DF
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Discussion

The byte addressed by the register designated by X is subtracted
JSrom the value in the D register. The complemented value of DF is also
subtracted at the same time and is presumably the result of a borrow or
no borrow from a previous subtraction. The result of the subtract is
placed in the D register, and DF indicates whether or not a borrow was
needed.

The byte addressed by R(X) is not changed. Register R(X) is also
unaltered by SMB. Only D and DF will change from the use of this
instruction.

Programming Example

0232 77 SMB ;Subtract M(R(X)) from D, taking the
value of DF as a possible borrow from
a previous subtract. Store the answer
in D and set DF to indicate if a borrow
has occurred.

[ 78 | SAV | Save

Symbolic Action
MER(X)) « T

Discussion

The eight-bit value of the T register (temporary register) is stored
at the memory location addressed by the register designated by X. The
value of T contains the packed hex values of X and P in a single byte;
thus, this action is used to save the values of X and P for later restoration
or to test their values during debugging. T is automatically set to the
values of X and P when an interrupt oceurs.

No registers are altered by the use of SAV. R(X) is normally used
as a stack pointer, although note that it is not decremented.

Programming Example

0233 T8 SAV ;Push T onto stack saving X and P
| 79 | MARK | Push X,P; mark subroutine call
Symbolic Action

T« X,P; M(R(2) «T; X « P; R(2) < R(2)—1

Discussion

Four separate things oceur on execution of a MARK instruction.
The current four-bit values of X and P are packed into a single eight-bit
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value contained in the T register. This byte is then stored at the memory
location addressed by register R(2). After this is done, the value of the
P register indicating the program counter is copied into X. Finally R(2)
is decremented by 1. Note that register R(2) is the normal stack pointer
for most 1802 software.

The reason for copying P into X is to provide a way for passing
bytes to a subroutine. Following the MARK instruction will usually be
2 SEP subroutine call (see SEP). Following this could be a string of
bytes needed by the subroutine. These bytes may be ‘obtained by execut-
ing LDXA instructions from within the subroutine as X points “back” to
the calling point.

Programming Example

0234 79 MARK :Push XP. SET X< P. Prepare for sub call
35 D4 SEP R@) ;Call subroutine with R(4)=program counter
36 01 . Three data bytes which the
37 02 . subroutine obtains by executing three
38 FF ;  LDXA instructions
39 (Main program continues on return from subroutine)

[ 7A | REQ | Reset Q=0

Symbolic Action

Q<0

Discussion

The flip-flop Q line is set equal to 0. No other registers, values, or
conditions are changed.
See SEQ for more information on using the versatile Q line.

Programming Example

023A T7A REQ :Set flip-flop Q line=0 (turn off)
[ 7B | SEQ | Set Q=1

Symbolic Action

Q<1

Discussion

The flip-flop Q line is set equal to 1. No other registers, values, or
conditions are changed.

The Q line provides a simple way to interface the 1802 processor
to the outside world. It may be connected to numerous devices and is
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frequently used as a “strobe” or pulse to tell another device that some
data is ready for intercepting on the data bus.

By setting and resetting Q at selected intervals, bits may be output
in a serial fashion—that is, one after the other down a single-bit line.
With some additional complications, Q may be used to store programs or
data on tape in the way of the Cosmac VIP computer.

In that same computer, Q is also used to trigger an oscillating circuit
that is connected to a speaker. By setting Q=1, a tone is turned on.
Setting Q=0 turns the tone off. Additionally, Q may be hooked directly
to a small amplifier/speaker circuit providing software control of the
speaker’s diaphragm movements.

Truly the Q line is a simple but versatile feature of the 1802 mi-
Croprocessor.

Programming Example

023B 7B SEQ ;Set flip-flop Q line=1 (turn on)
| 7C | ADCI | Add with carry immediate
Symbolic Action

DF,D < M(R(P))+D+DF; R(P) < R(P)+1

Discussion

Requires a single-byte argument. The byte immediately following
the ADCI instruction is added to the value in the D register. The ov-
erflow/carry flag DF is also added at the same time. The result of the
addition is placed in the D register destroying its previous contents. DF
indicates whether a carry or overflow out of D occurred following the
addition.

Programming Example
023C 7C 06 ADCI ;Add D register +DF+06, storing an-

swer in D, and set DF to indicate if ov-
erflow occurred.

| 7D | SDBI | Subtract D with borrow immediate
Symbolic Action

DF,D « M(R(P))-D-DF; R(P) < R(P)+1

Discussion

Requires a single-byte argument. The value of the D register is
subtracted from the byte immediately following the op code for the SDBI
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instruction. At the same time, the complement of DF is subtracted, then
the final answer is stored in the D register. Presumably DF contained
the result of a borrow or no borrow from a previous subtraction. Follow-
ing the SDBI, DF is set to indicate whether or not a borrow has oceurred.

Programming Example

023E 7D 00 SDBI ;Subtract the value of the D register
from 00, taking DF into consideration.
Store the answer in the D register and
set DF to indicate if a borrow has oc-
curred. (This example would negate D.)

TE SHLC Shift left with carry
TE RSHL Ring shift left

Symbolic Action
Shift D left one bit; LSB(D) « DF; DF « MSB(D)

Discussion

The value in D is shifted left one bit so that each of the eight bits
in D moves one bit position to the left. The previous value of DF moves
to the rightmost bit position in D. The leftmost bit of D moves into DF'.
All of these operations occur simultaneously. No bits are changed by
SHLC, only their positions.

Note that two mnemonics are associated with this instruction. Both
operations are identical but the intended use may differ.

In double-precision shifting, where DF contains a bit value from a
previous shift operation, an SHLC may take part in a simple multiply
by 2.

Programming Examples

0240 7TE SHLC :Shift D left. Move DF into the LSB of
D while moving the MSB of D into DF'.
Finish a double-precision multiply by 2.

0241 7E RSHL ;Ring shift left. Move DF into the LSB

of D to preserve the bit while moving
MSB of D into DF for testing that bit.

l TF | SMBI |  Subtract memory with borrow, immediate

Symbolic Action
DF,D « D-M(R(P))-DF; R(P) < R(P)+1
Discussion

Requires a single-byte argument. The byte immediately following
the SMBI op code is subtracted from the value in the D register. DF,
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presumably the result of a borrow or no borrow from a previous subtract,
is taken into consideration at the same time. The result of the subtraction
is stored in the D register, and DF indicates whether or not a borrow
was needed. This is identical in action to SDBI but with the operands
reversed.

Programming Example

0242 TF 01 SMBI ;Subtract 01 from D with the possible
borrow of a previous subtract in DF.
Store answer in D and set DF to indi-
cate if a borrow occurred.

| 8N | GLO | Get low register N
Symbolic Action

D < R(N).0

Discussion

The lower least significant eight bits of the 16-bit register N are
brought into the D register by the GLO instruction. At that time, the
state of those bits may be tested, stored, compared, or used in whatever
fashion fits the program design.

The original contents of the specified register are not changed by
using the GLO.

Programming Example

0244 8A GLO RA ;Get low eight bits of register R(A),
placing those bits in the D register for
examination.

[ 9N | GHI |  Get high register N

Symbolic Action
D « R(N).1

Discussion

Identical to GLO except that the high, most significant eight bits
of register N are brought into the D register. Again, the contents of the
specified register are not changed by the use of GHI.

Programming Example

0245 92 GHI R2 ;Get high eight bits of register R(2),
placing those bits in the D register for
examination.
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| AN | PLO | Put low register N

Symbolic Action
R(N).0 <D

Discussion

Opposite to GLO, the PLO instruction places the contents of the D
register into the low, least significant eight bits of the specified register.
The value in D is not changed by the use of this instruction, nor is the
other half of register N.

The primary use of PLO (also see PHI) is to set any of the sixteen
16-bit registers to a known value. Also, when a fast temporary storage
cell for D is needed, that value may be saved in a register by executing
a PLO for later retrieval through the use of a GLO instruction.

Programming Example
0246 A9 PLO R9 ;Put the value of D into the low eight
bits of register R(9)

| BN | PHI | Put high register N

Symbolic Action
R(N).1 <D

Discussion

Opposite to GHI, the PHI instruction functions identically to PLO
except that the contents of the D register are placed in the high, most
significant eight bits of register N. The value of D is not changed nor is
the other half of register N altered in any way.

Programming Example
0247 BF PHI RF ;Put the value of D into the high eight
bits of register R(F).

[ CO | LBR | Long branch
Symbolic Action

R(P).1 < M(R(P)); R(P).0 « M(R(P)+1)
Discussion

Requires a two-byte argument specifying a branch address where
the program is to continue. This address may be any four-digit hexade-
cimal (16-bit binary) address from 0000 to FFFF. The byte immediately
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following the op code of LBR is the high two hex digits (eight bits) of
the address. The next and last byte of this three-byte instruction spec-
ifies the low two hex digits (eight bits) of the address. Both of these
argument bytes are loaded into whichever register has been designated
the program counter by the value set into P at some previous time. Then
the program begins execution at that new address.

LBR causes an unconditional jump to occur. Regardless of any con-
ditions or values, the jump will always be taken.

Programming Example

0248 CO 04 48 LBR ;Branch unconditionally to memory lo-
cation 0448, in this example 512 bytes
ahead.

[ C1 | LBQ | Long branch on Q=1

Symbolic Action

If Q=1 then R(P).1 < M(R(P)); R(P).0 «— M(R(P)+1)
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If Q flip-flop is set to
1, then the branch will be taken to the specified address. Otherwise, the
program counter will be incremented by 2 to continue the program as if
the LBQ were not there.

Programming Example

024B C1 00 50 LBQ ;If Q=1 then branch to location 0050
| C2 | LBZ | Longbranch on D=0
Symbolic Action

If D=0 then R(P).1 « M(ER(P)); R(P).0 « M(R(P)+1
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If the D register is
equal to 0, then the branch will be taken to the specified address. Other-
wise, the program counter will be incremented by 2 to continue the
program as if the LBZ were not there.

Programming Example

024E C2 FO0 16 LBZ ;If D=0 then branch to memory location
Fo016
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| C3 | LBDF | Long branch on DF=1

Symbolic Action

If DF=1 then R(P).1 «— M(R(P)); R(P).0 «— M(R(P)+1)
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If the overflow/carry
flag DF is equal to 1, then the branch to the specified address will be
taken. Otherwise, the program counter will be incremented by 2 to con-
tinue the program as if the LBDF were not there.

Programming Example
0251 C3 Al 00 LBDF :If DF=1 then branch to memory loca-

tion A100
| c4 | NOP | No operation
Symbolic Action
R(P) « R(P)+1
Discussion

The program continues as though the no-operation instruction were
not there. Absolutely nothing is changed by executing an NOP.

The usefulness of an NOP is surprisingly high. It may replace a
questionable command during debugging or hold a place for a future
instruction.

Note that the C4 NOP takes three machine cycles for execution
and that other instructions may serve as NOPs when a two-cycle version
is needed. Setting X to its current value would be the equivalent of an
NOP, for example.

Programming Example

0254 C4 NOP ;No operation. Continue program
| C5 | LSNQ | Long skip on Q=0
Symbolic Action

If Q=0 then R(P) <~ R(P)+2 Else continue

Discussion

If and only if the Q flip-flop is set to 0, then the next two bytes will
be skipped. Otherwise, the instruction(s) formed by those two bytes will
be performed.
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Programming Example

0256 C5 LSNQ ;If Q=0 (not on) then skip next two
bytes
66 12 INC R2 ;Increment R2 X 2 on Q=1

57 12 INC R2
58 (Continue here)

| C6 | LSNZ | Long skip on D0
Symbolic Action
If D#0 then R(P) « R(P)+2 Else continue

Discussion

If the D register holds any value other than 0, then the next two
bytes will be skipped. Otherwise, if D=0, then the instruction(s) imme-
diately following the op code for LSNZ will be performed.

Programming Example

0259 C6 LSNZ ;If D#0 then skip over the next two
bytes

| €1 | LSNF | Long skip on DF=0

Symbolic Action

If DF=0, then R(P) < R(P)+2 Else continue

Discussion

If the overflow/carry flag DF =0, then skip the next two bytes. Oth-
erwise, if DF=1, then the following instruction(s) after the op code for
LSNF will be performed.

Programming Example

025A C7 LSNF ;If D=0 then skip over the next two
bytes
C8 LSKP Long skip
C8 NLBR No long branch

Symbolic Action
R(P) < R(P)+2

Discussion

The next two bytes are skipped regardless of any conditions that
may or may not exist. Note that two mnemonics are used. LSKP assumes
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that the following two bytes form an instruction or two instructions.
NLBR would be assembled as if the following two bytes form an address.
The distinction is important only during assembly, since execution is
identical for both mnemonic representations.

Programming Examples

026B C8 LSKP ;Skip the following two bytes uncondi-
tionally

025C C8 01 00 NLBR ;Do not branch to 0100

[ C9 | LBNQ | Long branch on Q=0

Symbolic Action

If Q=0 then R(P).1 « M(R(P)); R(P).0 < M(R(P)+1)
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If the Q flip-flop is equal
to 0 (off), then the branch to the specified address will be taken. Oth-
erwise, the program counter will be incremented by 2 to continue the
program as if the LBNQ were not there. Q is not changed by execution
of the LBNQ.

Programming Example

0256F C9 CO 01 LBNQ ;If Q=0 then branch to memory location
Co01

[ cA | LBNZ | Long branch on D#0

Symbolic Action

If D#0 then R(P).1 < M(R(P)); R(P).0 < M(R(P)+1)
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If the value in the D
register is not equal to 0, then the branch will be taken to the specified
address. Otherwise, if D=0, then the program counter will be incre-
mented by 2 to continue the program as if the LBNZ instruction were
not there. D is not changed by execution of the LBNZ.

Programming Example
0262 CA 00 02 LBNZ ;If D#0 then branch to location 0002
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| CB | LBNF | Long branch on DF=0

Symbolic Action

If DF'=0 then R(P).1 < M(R(P)); R(P).0 < M(R(P)+1)
Else R(P) < R(P)+2

Discussion

Requires a two-byte argument as for LBR. If the overflow/carry
flag DF =0, then the branch will be taken to the specified address. Oth-
erwise, the program counter will be incremented by 2 to continue the
program as if the LBNF instruction were not there.

Programming Example
0265 CB 7F 00 LBNF ;If DF=0 then branch to memory loca-

tion 7F00
| cC | LSIE | Long skip on IE=1
Symbolic Action
If IE=1 then R(P) « R(P)+2 Else continue
Discussion

If the interrupt enable flag is set equal to 1 (i.e., interrupts will be
acknowledged), then skip the next two bytes. Otherwise, if IE=0, the
instruction(s) formed by the two bytes following the op code for LSIE
will be executed.

Note that this is the only 1802 instruction available for conditionally
altering program flow on the value of the interrupt enable flag. In com-
bination with branch instructions, other conditional responses to IE may
be constructed.

Programming Example

0268 CC LSIE ;If IE=1 then skip next two bytes
69 30 00 BN ;If IE=0 then branch to 0200
6B (more code) ;Continue here if IE=1 (set)

[ CD | LSQ | Long skip on Q=1

Symbolic Action
If Q=1 then R(P) < R(P)+2 Else continue
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Discussion

If the @ flip-flop is set equal to 1 (on), then the next two bytes will
be skipped. Otherwise, if Q=0, then the instruction(s) formed by the two
bytes immediately following the op code for LSQ will be executed. Q is
not changed by the use of LSQ.

Programming Example
026C CD LSQ ;If Q=1 then skip the next two bytes

| CE | LSZ | Long skip on D=0

Symbolic Action
If D=0 then R(P) « R(P)+2 Else continue

Discussion

If the value in the D register is equal to 0, then the next two bytes
will be skipped. Otherwise, if D is any value other than 0, the instruc-
tion(s) formed by the two bytes following the op code for LSZ will be
executed. D is not changed by the use of LSZ.

Programming Example

026D CE LSZ ;If D=0 then skip the next two bytes
| CF | LSDF | Long skip on DF=1

Symbolic Action

If DF=1 then R(P) < R(P)+2 Else continue

Discussion

If the overflow/carry flag DF is set equal to 1, then the next two
bytes will be skipped. Otherwise, if DF is equal to 0, the instruction(s)
formed by the two bytes immediately following the op code for LSDF
will be executed. DF is not changed by the use of LSDF.

Programming Example

026E CF LSDF ;If DF=1 (i.e., on overflow) skip next
two bytes

| DN | SEP | SetP

Symbolic Action

P « N; R(N) becomes the program counter
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Discussion

P is set to the hex digit specified by N. This may be any of the 16
digits 0 through F.

The instruction SEP is one that helps make the 1802 processor
unique. Any single one of the sixteen 16-bit general-purpose registers
may be designated as the program counter merely by setting P to the
number of that register. Upon execution of the SEP instruction, the
program will begin running at the address specified in register R(N),
leaving the previous program counter addressing the byte immediately
following the op code for the SEP instruction. Such means for switching
program counters offers an extremely fast and simple method for calling
and returning from subroutines.

Programming Example

026F D4 SEP R4 ;Set P=4. R(4) becomes the program
counter. Call sub whose address is in
R(4)

[ EN | SEX | SetX

Symbolic Action

X <« N; Register R(N) becomes reference for all “X” type instructions

Discussion

This wholesome instruction resembles SEP in operation except that
X is set to the hex digit specified by N. That hex digit may be any one
of 16, 0 through F'.

Normally, a register (most often R(2)) is selected to be the stack
pointer by executing the instruction E2 SEX R2, causing X to become
equal to 2. Future commands such as STXD and LDXA would then ref-
erence the bytes addressed by R(2). In addition, most arithmetic instruc-
tions use the register designated by X to point to an operand located in
memory. SEX is often followed by an arithmetic procedure.

Also, SEX will be used in place of the three-cycle NOP,C4. If X is
already equal to 2, then the instruction E2 SEX R2 would cause nothing
to happen. Since SEX is a two-cycle instruction, this technique is fre-
quently used when a three-cycle command would interfere with eritical
timing requirements of an 1802-based system.

Programming Example
0270 EE SEX RE ;Set X=E. R(E) is reference register for
future “X” type instructions.
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[ FO | LDX | Load via X

Symbolic Action
D « M(R(X))

Discussion
The byte addressed by the register designated by X is loaded into
the D register. In its original location, the value of that byte remains the
same. Also the register R(X) is not changed by the LDX instruction.
When used in stack handling, LDX is said to “pop” a byte off the
top of the stack.

Programming Example
0271 FO LDX ;Pop stack. Place value in D register.

| F1 | OR | Logical OR

Symbolic Action
D <« M(R(X)) OR D

Discussion
The byte addressed by the register designated by X is combined
by the rules of the logical OR with the value in the D register. The
resulting byte is placed in the D register. ORing occurs on a bit-by-bit
basis, adjacent bits in the bytes having no effect on their neighbors.
R(X) is not changed, nor is the byte addressed by R(X) altered in
any way.

Programming Example

0272 E4 SEX R4 1 X=4
78 F1 OR ; Logically OR D with the byte addressed
by R(4) and place the result in D
| F2 | AND | Logical AND
Symbolic Action

D « M(R(X)) AND D

Discussion

The byte addressed by the register designated by X is combined
by the rules of the logical AND with the value in the D register. The
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resulting byte is placed in the D register. ANDing occurs on a bit-by-bit
basis, with adjacent bits having no effect on their neighbors.

R(X) is not changed, nor is the byte addressed by R(X) altered in
any way.

Programming Example

0274 Eb5 SEX R5 1 X=5
75 F2 AND ;Logically AND D with the byte ad-

dressed by R(b) and place the result
inD

| F3 | XOR | Logical exclusive OR

Symbolic Action

D « M(R(X)) XOR D

Discussion

The byte addressed by the register designated by X is combined
by the rules of the logical exclusive OR with the value in the D register.
The resulting byte is placed in the D register. Exclusive ORing occurs
on a bit-by-bit basis with adjacent bits having no effect on their neigh-
bors.

R(X) is not changed, nor is the byte addressed by R(X) altered in
any way.

Programming Example

0276 EF SEX RF ;X=F
7 F3 XOR ; Logically exclusive OR D with the byte
addressed by R(F') and place the result
inD
[ F4 | ADD | Add

Symbolic Action
DF,D « MRX))+D
Discussion

The byte addressed by the register designated by X is added to the
value in the D register. The result of the addition is placed in the D
register and the overflow/carry flag indicates whether or not overflow
occurred.

R(X) does not change, nor does the byte addressed by R(X). The
previous value of DF has no bearing on the addition.
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Programming Example
0278 F4 ADD ;Add D to M(R(X)) and place the answer
in D. DF indicates if overflow occurred.

[ F5 | SD | Subtract D

Symbolic Action
DF,D « M(R(X))-D

Discussion

The value in the D register is subtracted from the byte addressed
by the register designated by X. The result of the subtraction is placed
in the D register and the overflow/carry flag DF indicates whether or
not a borrow was needed.

R(X) does not change nor does the byte addressed by R(X). The
previous value of DF has no bearing on the subtraction.

Programming Example
0279 F5 SD ;Subtract D from M(R(X)) and place the
answer in D. DF Indicates borrow.

G | SHR |  Shift right

Symbolic Action

Shift D right one bit; MSB(D) « 0; DF « LSB(D)
Discussion

The value in the D register is shifted right so that each of the eight
bits in D moves one bit position to the right. The least significant bit of
D moves into DF. A 0 bit is in turn shifted into the most significant bit
of D. All of these actions occur simultaneously. The old value of DF is
lost and is of no consequence to the result of SHR.

Programming Example
027TA F6 SHR ;Shift D to the right one bit position.
MSB(D)=0 and DF= old LiSB of D.

|_F7 | SM J Subtract memory

Symbolic Action
DF,D < D-M(R(X))
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Discussion

The byte addressed by the register designated by X is subtracted
from the value in the D register. The result of the subtraction is placed
in D and the overflow/carry flag DF indicates whether or not a borrow
was needed.

R(X) does not change nor does the byte addressed by R(X). The
previous value of DF has no bearing on the result of the subtraction.

Programming Example
027B F7 SM ;Subtract M(R(X)) from D. Place the re-

sult in D and set DF to indicate if a
borrow occurred.

| F8 | LDI | Load immediate
Symbolic Action

D < M(R(P)); R(P) < R(P)+1

Discussion

Requires a single-byte argument. Execution of the LDI instruction
causes the value of that argument to be loaded into the D register.

Programming Example

027C F8 00 LDI ;Load D register with the value 00
| F9 | ORI | Logical OR immediate

Symbolic Action

D < M(R(P)) OR D; R(P) «< R(P)+1

Discussion

Requires a single-byte argument. The byte immediately following
the op code for ORI is combined by the rules of the logical OR with the
value in the D register. The resulting byte is placed in the D register.

Programming Example

027E F9 30 ORI ;Logically OR D with hexadecimal 30
and store the result in the D register

[ FA | ANI | Logical AND immediate

Symbolic Action

D « M(R(P)) AND D; R(P) < R(P)+1
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Discussion

Requires a single-byte argument. The byte immediately following
the op code for ANI is combined by the rules of the logical AND. The
result is placed in the D register.

Programming Example

0280 FA FO0 ANI ;Logically AND the D register with hex-
adecimal F'O. Place the result in the D
register.

| FB | XRI | Logical exclusive OR immediate

Symbolic Action

D « M(R(P)) XOR D; R(P) < R(P)+1

Discussion

Requires a single-byte argument. The byte immediately following
the op code for XRI is combined by the rules of the logical exclusive OR.
The result is placed in the D register.

Programming Example

0281 FB FF XRI ;Logically exclusive OR the D register
with the hexadecimal value FF. Place
the result in the D register. (This ex-
ample would complement the value
in D.)

| FC | ADI | Add immediate

Symbolic Action
DF,D <« M(R(P))+D; R(P) < R(P)+1

Discussion

Requires a single-byte argument. The byte immediately following
the op code for ADI is added to the value in the D register. The result
of the addition is placed in D. DF is set to indicate whether or not
overflow occurred.

The previous value of DF has no bearing on the result of the ad-
dition.

Programming Example

0283 FC 01 ADI ;Add 01 to the D register. Set DF to
indicate if overflow oceurred.
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| FD | SDI |  Subtract D immediate
Symbolic Action

DF,D « M(R(P))—D; R(P) <« R(P)+1

Discussion

Requires a single-byte argument. The value in the D register is
subtracted from the byte immediately following the op code for SDI. The
result of the subtraction is placed in the D register. DF indicates whether
or not a borrow was needed.

The previous value of DF has no bearing on the result of the sub-
traction.

Programming Example

0285 FD 21 SDI ;Subtract the D register from hexade-
cimal 21. Place the result in D and set
DF to indicate if a borrow occurred.

| FE | SHL |  Shift left

Symbolic Action
Shift D left one bit; LSB(D) « 0; DF « MSB(D)

Discussion

The value in the D register is shifted left so that each of the eight
bits in D moves one bit position to the left. The most significant bit of
D moves into DF. A 0 bit is in turn shifted into the least significant bit
of D. All of these actions occur simultaneously. The old value of DF is
lost and is of no consequence to the result of SHL.

Programming Example

0287 FE SHL ;Shift D to the left one bit position.
LSB(D)=0 and DF= old MSB of D

| FF | SMI |  Subtract memory immediate

Symbolic Action

DF,D « D-M(R(P)); R(P) « R(P)+1

Discussion

Requires a single-byte argument. The byte immediately following
the op code for SMI is subtracted from the value in the D register. The
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result of the subtraction is placed in the D register. DF indicates whether
or not a borrow was needed.

The previous value of DF has no bearing on the result of the sub-
traction.

Programming Example
0288 FF 02 SMI :Subtract 02 from the D register. Place

the result in D and set DF to indicate
if a borrow occurred.
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The Assembler

If you have done much programming in absolute hex, loading in-
struction codes by hand into a computer, you may have wondered if a
better way didn’t exist. The following program will free you from the
tedious job of translating mnemonics from a table into machine language
hex codes, a process that not surprisingly is a common source of many
frustrating bugs.

Instruction validity is checked as you type, eliminating errors that
otherwise could go undetected until run time. The assembler is capable
of assembling code anywhere in programmable memory. Once you have
it running, the program may be used to expand its own capabilities. In
fact, some of the following code was written in this manner on the au-
thor’s system (a 4K Cosmac VIP) using the sections that had been com-
pleted to finish the rest and to experiment with controllers responsible
for running the assembler.

Any 1802 system may use this assembler. All routines are modular,
capable of functioning alone without complications. No assumptions have
been made about your operating system except that it must be able to
accept ASCII keyboard input and have the ability to print ASCII en-
coded information in some fashion.

Register use has been purposely restricted to avoid competing with
your system’s requirements. RO and R1 have not been used at all, these
registers being reserved for interrupt usage common in many 1802 com-
puters. R2 must be set by you to an area designated as a stack with a
minimum of 11 bytes of headroom available before calling ASMBLR with
a SEP R4 D40600 instruction.

Register R3 is the program counter controlled by the standard call
and return technique (SCRT) exactly as described in RCA’s 1802 user’s
manual. The assembler’s use of SCRT assumes X to be set to 2 upon
execution of a CALL, and that at all times R2 addresses a free byte at
the top of the stack. The CALL routine runs in R4, the RETN in R5
with R6 functioning as a pointer to the return address and/or arguments
to be passed. You must provide these call and return subs and dedicate

118
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R4, R5, and R6 to their use as subroutine controllers. Provided you
follow RCA’s suggested techniques, this should give you no problem.

Registers R7, R8, and R9 are not required by the assembler nor
are their values changed by any of its routines.

Registers RA, RB, RC, RD, RE, and RF are used by the assem-
bler. If your system also uses these registers, you will need to push onto
the stack any values you want to preserve, then restore those values on
return from the assembler. Be sure your stack has enough room for these

bytes.
Register RA needs some special care. It will be used by the assem-

bler as a pointer to the final assembly. In other words, RA tells the
assembler at what address to assemble instructions into memory.

It will be more convenient if your system does not change RA
between calls to ASMBLR. Then you may program sequentially, having
to specify a starting address only once. If your system needs RA, then
you will have to preserve and restore values (swap) on both the CALL
and RETN to and from assembly.

The suggested handler flow chart should help you overcome any
difficulties presented by these restrictions. This flow chart assumes the
worst case—that your system needs all of the registers mentioned above.
Even though this will result in the most complex handler for the assem-
bler, you will still be able to run the program.

Register RB.1is used to hold the display page address in some VIP
systems. This is not allowed concurrently with the use of the assembler
if video refresh is being controlled via an interrupt routine. Two possible
solutions: (1) turn off the video, set RB.1 to the input buffer for the
assembler, then restore RB.1 before turning on the video after assembly;
or (2) write a new interrupt routine that loads the display page as an
immediate value instead of from a register. The second solution is pre-
ferred.

Instructions for Using

Input to the assembler follows an unstructured format. You must
adhere to a few rules, but the program is very forgiving. A 32-byte input
buffer has been reserved at 0400-041F, although you may elect to have
input (and subsequent output from the disassembler) appear in any mem-
ory location indicated by RB.1. This buffer must begin on a page bound-
ary (the buffer low address starting at 00). You are responsible for set-
ting RB.1 to 04 if you plan to use the reserved buffer at 0400.

Into this buffer go the ASCII codes representing the instruction
you want to assemble into memory. The very first thing you must specify
in the buffer is an address where you want the output to go. Failure to
specify a starting address may crash the assembler if it is loaded into
RAM.
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To specify any hex value for the address or an instruction argument,
type the dollar sign (“$”) followed by the hex value. No spaces may
follow the $ and the hex digits. Values may be up to four digits long.
Leading zeros do not need to be written. If you specify too many digits
(>4) an error will result. If you specify too many digits for an instruction
requiring a single-byte argument, only the last two digits will be used.
Zero is the default value if only the $ is typed.

Mnemonics are entered as listed in RCA literature (and in this
book, of course). Entering a nonexistent mnemonic will produce an error
message. Once you have entered a starting address (followed by an in-
struction), subsequent instructions may be entered without specifying g
new address.

If the instruction requires an argument, this must be entered in
hexadecimal (preceded by the $ sign) following the mnemonic. The as-
sembler accepts only hexadecimal arguments.

If the instruction requires a register reference, this must be entered
following the mnemonic. Practically any form will work: R4, REGY, 4,
$4 will all assemble as a reference to register R4. The only restriction is
that whatever follows the mnemonic must contain no spaces and must
end with the specified hex digit. This may be of use with 6N input/output
instructions allowing a device number (for example DEV-N) to be spec-
ified. It will disassemble as RN, however.

The assembler ignores anything in the line following a valid instruc-
tion. Comments could thus be kept without needing to precede them
with a semicolon, although this assembler will more often be used in a
direct or immediate assembly mode rather than in assembling a long
source listing.

Note that a carriage return is not required to terminate the input
in the buffer. If a carriage return does not terminate the input, however,
the last string (the mnemonic, the register reference, or the argument)
must be followed by at least one space. In other words, only spaces
(ASCII 20) or a CR (ASCII OD) will terminate input strings.

Provided the input is acceptable to the assembler, the instruction
op code and any required arguments will be placed into memory via RA.
If an error is detected during the assembly process, the assembly will
be aborted, leaving the address in RA unchanged. (Therefore, if an error
is received, you may reenter the instruction without having to respecify
the address.) The byte addressed by RA may or may not be changed,
depending on when the error occurred.

When the assembly of any instruction is complete, RA is left point-
ing to the assembled instruction not at a new position past the instruction
as may be expected. At this point in the process, the assembler calls a
disassembler routine (DISASM), which will advance RA.

DISASM is called to provide a confirmation echo of the assembled
instruction. The same input buffer (now serving as an output buffer) is
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first set to all ASCII spaces (20 hex). The instruction is then disassem-
bled in ASCII into the buffer ending with a carriage return at the 17th
character position. On return from the assembler, the ASCII code in the
buffer should be printed by your operating system to echo the instruction
you just entered. This provides a sure confirmation that the code was
assembled as expected. On a video display it will look good to have the
output overwrite the previously typed input, then scroll up a line or two.

If you wish, you may call DISASM separately subject to the same
register restrictions and requirements for ASMBLR. The instruction
addressed by RA will be disassembled into the buffer, and RA will ad-
dress the next instruction in memory on return.

Debugging Hints

All possible errors are not recognized by ASMBLR, although most
common ones will be caught. It is possible to assemble the illegal instruc-
tion LDN RO, for example, although this will disassemble as the IDL
command. Also, you may assemble the illegal INP D8 or OUT D8 or
OUT DO, but again these will disassemble correctly as the illegal 638
“___* instruction and the legal 60 “IRX” code. Since the buffer pro-
vides immediate confirmation at assembly time, these unusual errors cer-
tainly won’t go unnoticed by the programmer.

DISASM always uses the first instruction mnemonic it finds in the
table. Therefore, if you input a BGE $00, it may disassemble as BDF 00,
which is the same thing. Other duplicate mnemonics will respond simi-
larly.

If you receive the “~—-" output for an op code that you think
should be correct, you have a problem in the mnemonic table and need to
check that the table was loaded correctly. This debug “bounce” was in-
cluded in DISASM as an aid to implementation. Likewise, if a known
mnemonic won’t assemble (but others will), the problem is most likely in
the table.

When using DISASM alone, be careful not to address the middle
of an instruction with RA (i.e., the second or third byte of a two- or
three-byte instruction). Disassembly could then appear quite foreign to
what it should. Be sure RA addresses a valid 1802 instruction before
calling DISASM. This cannot happen when DISASM is called from
ASMBLR.

You may obtain a hex dump with a call to address $078A. Set RB
(RB.1 and RB.0 here) to the top of your buffer cleared to spaces, and
the number of bytes +1 to output in RC.0. The bytes addressed by RA
will be dumped in ASCII into the buffer followed by a CR at position 17.
Be especially careful not to overwrite the end of the buffer by dumping
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too many bytes at once! No checks are made against this happening. If
you want to output the address in RA with the hex dump you may call
$0763 with the same parameters with RC.0 set to exactly the number of
bytes to output. This may produce a strange output on RC.0 = 02, how-
ever,

The output of DISASM is configured to a 16-character line, meaning
that arguments for three-byte instructions such as LBR just don’t have
room to be printed following the mnemonic. If you are fortunate to have
a longer line, the code has been written to allow easy expansion. Each
section of output is TABed to a start address in the buffer even when
this meant programming additional code into DISASM. You may set the
tabs to any values you want, thus formatting the output to your tastes.
If you use a buffer greater than 32 bytes, you must also modify the code
at the beginning of DISASM to clear the additional buffer space to all
ASCII 20s.

Physical layout of the subroutines is purposely wasteful. Although
all routines reside in a 1K (4-page) memory area, 363 bytes are available
for expansion within that area. The main loops have been separated to
their own pages (ASMBLR @ 0600, DISASM @ 0700) so that you may
easily construct patches if you decide to add capabilities. (One idea that
comes to mind would be to print out specific error messages depending
on the error that occurred. Perhaps this could be a first project using
the assembler to construct the routines!)

The mnemonic table may be expanded to include entries of your
own design. Each entry is six bytes long in a format explained in the
listing. The optional CALL and RETN may be added at the suggested
addresses (replacing NBR and NLBR, respectively) or.simply tacked on
to the end of the table. The very last byte in the table must be an FF
hex byte or the assembler is almost sure to fail. The table may be any
length.

All of the routines may be placed in ROM, although you will have
to change call addresses to relocate the routines. No long branches, long
skips, or three-cycle instructions have been used. The input buffer must,
of course, reside in RAM.

A “trick” the author has discovered on using ASMBLR is to call
the program with only an address (preceded by $ as described) in the
input buffer. The effect is an error; however, RA will still be set to the
address before the error occurs. You may want to use this technique to
set RA before calling DISASM, perhaps looping several times to output
successive instructions.

O O O
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Operation Summary

Input examples (ASMBLR) Output examples (DISASM)
$A00 LDN R6 0A00 06 LDN R6
BNZ § 0A01 3A00 BNZ 00
GLO REG-F 0A03 8F GLO RF
PLO E 0A04 AE PLO RE
$07E0 LDI  $1234 07E0 F834 LDI 34
SEP 3 07TE2 D3 SEP R3
SEX 2 07E3 E2 SEX R2
CALL $600 07E4 D40600 CALL
RETN 07TET D5 RETN

INP D-0 07E8 60 IRX

LDN RO 07E9 00 IDL

OoUT D-8 07TEA 68 -——-

0900 LDP ERROR

The above examples should answer some format questions you may
have. The column on the left shows how input may appear in the buffer
before calling ASMBLR. The column on the right shows how DISASM
will disassemble the input. Some experimentation on your part will re-
veal what the assembler likes and doesn’t like more explicitly than is
possible to present here.

To Call ASMBLR

. Put ASCII input into buffer
. Save registers (as needed)
Set RB.1 to address buffer
Call ASMBLR (D40600)
Restore saved registers

. Print echo in buffer

& T 00 10

To Call DISASM (Optional)

1. Save registers (as needed)
2. Address op code with RA

3. Set RB.1 to address buffer
4. Call DISASM (D40700)

5. Restore saved registers

6. Print buffer

Notes on the Listing

The following program listing does not strictly follow assembly lan-
guage formats since it is assumed that most users will be keying it in
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ASSEMBLER (»)
RESET RB YES
RB.0—00

[= NO
DESCRIBE DECODE
STRING ARGUMENT

FIX ADDR
IN RA

OUT HIGH
o
SEARCH OUT LOW
MNEMONIC BYTE
S~ N0 RESTORE
% L RA ADDR
YES i
GETOP CD CALL
AND LEN DISASM
YES ADVANCE ( RETN )
REG? | te]
b RBTO N
NO
NO
ERROR
YES
g COMBINE SET RF
g op="N" TO MESSAGE
SAVE RA QUTPUT
ADDRESS MESSAGE
| [
QUTPUT OPTIONAL
0P CODE LN FEED

®

using absolute hex entry. CALL is SEP R4 followed by an address and
RETN is SEP R5 with no argument.

On the other hand, all subroutine entries have been labeled and all
branch destinations marked. This will be handy for those who wish to
relocate the code elsewhere in memory.

Local jumps within a routine use local labels that begin with a
number. The label 1H (the H means “here”) marks a location that may
be jumped to with a branch 1F (“forward”) or 1B (“back”). Note that
1H may be repeated several times. A jump always proceeds in the in-
dicated direction to the nearest local label of the same number. (Thanks
go to D. Knuth, The Art of Computer Programming, for his explanation
of this remarkably simple assembly technique, although he does not claim
to be the originator of the idea.)
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At location 0682 in the error handler of ASMBLR a call is made to
your operating system’s line feed routine. This would protect the bad
input on display from being overwritten by the ERROR message, allow-
ing examination of what went wrong. The call is optional, and you may
terminate the routine with a D5 SEP R5 at 0682 if you wish.

START DISASSEMBLER

SUGGESTED

START
(smr ) HANDLER

INPUT
TO BUFFER

PUSH RA, RB, RC
SR E RD, RE, AF
AS NEEDED
OR WITH
HEX 07 RB 1+
BUFFER 1

RESTORE RA
ASMBLY ADDR.

CALL
ASMBLR

AVE RA
ASMBLY ADDR.

NO
QUTPUT
0P ARGS

(B) (DEBUG OP CODES)

RESTORE RA, RB,
RC, RD, RE, RF
AS'NEEDED

PRINT ECHO
IN BUFFER

REGISTER ASSIGNMENT

RO = DMA Pointer = not used or changed

Rl = Interrupt PC « not used or changed

R2 - Stack Pointer - to be fixed by usger

R3 = Program Counter

R4 =« Call routine PC - to be fixed by user

R5 = Return routine PC = to be fixed by user

R6 = Pointer to return = to be fixed by user CALL/RETN routines

R7 = Undefined - not used or changed

R8 = Undefined - not used or changed

R9 = Tindefined = not used or changed

RA = Pointer to final assembly - set by assembler - must not
be changed by user!

RB = Pointer to Input Buffer = RB,1 set by user - RB.0 = 00 =
top of buffer

RC ~ Utility - loops, flags, data passing, etceee

RD FREL " L n " n "

RE - " L] n " " "

RF - " L] (1] " n L]



okoo
o420
0800

0400
0420
0429
O43E
0451
OL5F
0478
048BE
o4c2
OLE3
O4F0
O04F6
0500
0529
0542
0556
055F
056B
0577
0584

0600
0686

0700
0795

0800

[N S B A T A AN B B A

OL1F
O07FF
09FF
(363

O41F
oL28
043D
ol50
OL5E
oh77
oL8D
olci
oLE2
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MEMORY ALLOCATION

= Input Buffer (optional)

= Program

= Mnemonic Look up Table (ends with FF)
bytes available for expansion)

SUBROUTINES

32 byte Input Buffer
ASCHEX

ASCDIG

HEXASC

HEXDIG

DESCRB (Entry @ 0460)
LEN

MNESCH

OPSCH

REGTAB

DUMMY

AVAILABLE (10 bytes)

NUMBER

VALHEX

REGSCH

FIXRC

ADVRB (Entry @ 0560)
OUTBUF (056D = OUTBUFZ2)
ERRPNT

AVAILABLE (124 bytes)

= ASMBLR (Main loop)
= AVAILABLE (122 bytes)

= DISASM (Main loop)
= AVAILABLE (107 bytes)

= MNEMONIC TABLE

R e e L e i L e e L S T S

3 ASCHEX: ASCII/HEX CONVERSION
‘***ﬂ********iﬂ*&****#***************#***ﬁ**ﬁ*#*ﬂ**ﬁl****ﬁ*****
3 INPUT: == RE,1 = firet ASCII digit (valid range)

1]
i
3 OUTPUT:
]
H

CALLS:s

RE.0 = second ASCII digit (valid range)
== RF,1 = hexadecimal equivalent

== HEXDIG

i
1 CALLED BYs == NUMBER

I
1 CHANGES:
e e e e e

==  RE

0422 ASCHEXs Dt SEP R4  jCall ASCDIG with RE.1 holding
0

3 ASCII code for converting

29
8E GLO RE 1Get second half ASCIT code

BE PHI RE jPut in RE.1 for passing to sub
D4k SEP R4  ;Call ASCDIG with RE.1 holding
oL t  ASCII code for converting
29

D5 SEP RS5 jReturn = hex value in RF.1
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‘*ﬁ*ﬁ*****nﬂ***ﬁ****iﬁ*******ﬁ*****ﬁ**ﬁ***%***ﬂ*G******iﬂ**i***

3 ASCDIGs

i
1 OUTPUTs

]

ASCII DIGIT CONVERSION
B

1 INPUT:

RE.1

one ASCII digit
RF.1 4 MSBs < RF.1 4 LSBsj

RF.1 4 LSBs < one hex digit

L
3 CALLED BYi ==

i
§ CHANGES#
,****#**ﬂ***%***ﬁ*#*ﬁ*****ﬁ**%********#**%*ﬁ#***h***&*#!**ﬁ****

0429 ASCDIG:
2A

2B
2C
2D

1Hs

ASCHEX

== RE.1 RF,1
9E GHI RE
FD SDI  $39
39
33 BPZ IF
32
9E GHI RE
FC ADI  $09
09
BE PHI RE
9E GHI RE
FA ANT  $OF
OF
52 STR R2
9F GHI RF
FE SHL
FE SHL
FE SHL
FE SHL
F1 OR
BF PHI RF
D5 SEP RS

1Get passed ASCII code from RE.1
sSubtract from 39 hex -- if negative
H ‘then ASCII > 39

sBranch if positive or zero ==

3 ASCII= 39 and is numerical

;Get same ASCII code (>39)

sAdd 9 to convert all

s alphabetical characters to range
jReplace in RE.1 then continue

sGet possibly adjusted ASCII code
3AND with OF hex to retain

3 only the last four bits
tPush this value onto the stack
1Get RF.1 = ﬁossibly %4 hex value
1Shift left 4 times to preserve
i the original low 4 bits and
3 ‘to open up space for

1 inserting a new hex digit
$OR in new hex digit

gjPlace value in RF,1

s Return

‘************&***H**%*********%ﬂ*ﬁ*%ﬂ*****%**%**ﬂ*****ﬁ***“*%**

3 HEXASC:

HEX/ASCII CONVERSION
;#**ﬁ****ﬁ***%%ﬁﬂ%********ﬁ***%*&%#****ﬂ*ﬁﬁ**ﬂ*#*****#ﬁ%&*****ﬂ

== RFs1 = hex value

== RE.,1 = first ASCII digit
RE.0 = second ASCII digit

DISASM OUTBUF

;*******ﬁﬁ**i**ﬁ§§%*ﬂ********ﬂ**#*********ﬁ*********&ﬁ*ﬁ**ﬁﬁ%ﬁ%

3 INPUT:

i

3 OUTPUT:

i

]

3 CALLS: == ASCDIG

i

§ CALLED BY§ ==

]

3 CHANGES: == RE

043E HEXASC: O9F GHI
3F F6 SHR

okho F6 SHR
b1 F6 SHR
L2 F6 SHR
ﬁz AE PLO

D4 SEP

45 ol

RF

1Get hex byte from RF.1
$Shift right 4 times to move

1 4 MSBEs to LSB position

3 (sub will convert one hex

; digit at a time)

sPut in RE.0 to pass to sub

1Call HEXDIG with hex digit in

3 RE.0 = returns ASCII equivalent



51
8E GLO
BE PHI
9F GHI
FA ANT
OF

AE PIO
D4 SEP
ok

51

D5 SEP
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RE
RE
RF
$or

RE
RE

R5

$ in game register

s Transfer converted digit from
§ RE.0 to RE.1

1Get same hex byte from RF.1
$AND with OF to retain only

;3 the low 4 bits (2nd digit)
tPut in RE.0 for passing to sub
3Call HEXDIG with hex digit in
i RE.0 ~ returns ASCII equivalent
$ in same register

jReturn - 2 byte ASCII in RE

g SRR SR 3 A SRR R I A B I T I S I SRR T IR I S 4 2 0 S e

HEX DIGIT CONVERSION
§ AP SR S IR T IR S0 S RS RIS L2 6 S S A R S S S

single hex digit in low &4 bits

3 HEXDIG:
1 INPUTs
i

OUTPUT:

RE.O =

RE.0 = ASCII equivalent

st e R L R LR R T R e R S R R R R R S S T

sGet hex digit passed in RE.0
jSubtract from 9 == if negative
1 then digit> 9, a letter
sBranch if positive or zero

f digit is <9, a number

1Get same hex digit (>9)

jAdd 7 to convert all letters

H to range

tPut in RE.O0, then continue
sGet digit, possibly adjusted
jAdd in ASCII code information
H ‘to complete conversion

$Put in RE.0 to return ASCII code
tReturn

H F 304 S 3 B0 THIE R B0 2R S B B A S AR SR 20 0 30 SR A 3R AR 40 20 SR R JE AR I IR 2 R A S0

§ B R SR AR S SE S S0 30 IS0 0 R 0000 0 006 B T3 3000 3006 5 20 B
RB addresses input buffer

RB addresses first character of string
1 = Mnemonic (probable)

2 = Numerical ($ sign)

3 = Carriage return

D e e

tIncrement RB past siaces

31Get character from input buffer
tCompare with ASCII for a

3 gpace

3If a space, branch to inecrement

H

H

t CALLED BYs == HEXASC

H

3 CHANGES: == RE.O

H

0451 HEXDIG: 8E GLO RE
52 FD SDI  $09
53 09
54 33 BPZ 1F
55 5A
56 8E GILO RE
57 FC ADI  $07
58 07
59 AE PLO RE
50  1H; 8E GLO RE
5B FC ADI  $30
5¢C 30
5D AE PLO RE
5B D5 SEP RS

1 DESCRB1 DESCRIBE STRING

3 INPUT: -

]

3 OUTPUT: -

H RF.0 =

¥ RF.0 =

3 RF.0 =

H

3 CALLED BY: == ASHBLR

}

4 CHANGES: == RB RF.0

O4s5F  1Hs 1B INC RB
60 DESCRBs OB LDN RB
61 FB XRI 320
22 20

32 BZ 1B

& 3

3 RB past all spaces
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o0L46s F8
66 03
67 AR
68 0B
69 FB
6A oD
6B 3A
6C 6E
6D D5
6E 1H: 2F
6F 0B
0470 FB
71 2L
72 3A
7 76
7 1B
i) D5
76 1H: 2F
77 D5
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LDI

PLO
LDN
XRI

BNZ
SEP
DEC
LDN
XRI
BNZ
INC
SEP

DEC
SEP

$03
RF
RB
$oD

1F

R5
RP
RE
24
ir
RB
R5
RF
R5

1Load D with 03 byte

1Set RF.0 = 03 to initialize register
jGet same character from buffer
sCompare with ASCII for a

] carriage return

$If # 0D, branch to skip over

H next instruction

tReturn, RF.0 = 03 = carriage return
sDecrement RF (RF.0 = 02)

31Get same character from buffer

jCompare with ASCII for

3 g sign (hexadecimal)
sBranch on ¥ $ == not a

H hexadecimal

sAdvance RB past the $ sign
sReturn. RF.0 = 02 = numerical
sDecrement RF (RF.0 = 01)
sReturn = probable mnemonie

§ H I ARG 3 I IR A A S I R AR IR 2 I S R B AR B R I R I B A S

3 LEN: LENGTH STRING

'*ﬁ****ﬁ*ﬂﬂ&ﬂ*ﬂ*ﬂ*****ﬁ****ﬂﬂ******&l*Hﬂﬂ*»***&i***ﬂ********ﬁi*
3 INPUT: == RB addresses any string in buffer

H

3 OUTPUT: == RE,1 and RE.0 = # bytes to next CR or space

RB addresses same string (unchanged)

3 CALLED BYs == MNESCH NUMBER
'

3 CHANGES: -

;**ﬂ**ﬁ****E*ﬁ*ﬂ***ﬁ&ﬂﬂﬁ**************ﬂ*i%***ﬁ*********ﬁ*******

0478 LEN: 8B
79 52
7A F8
7B 00
7c AR
7D 38
7E 1H: 1E
7F 0B

0480 FB
81 20
82 32
83 89

ohBl LB
85 FB
86 oD
87 3A
88 7E
89 2H: 8E
8A BE
8B FO
8c AB
8D D5

GLO
STR
LDI

PLO
SKP
INC
LDN
XRI

BZ

LDA
XRI

BNZ

GLO
PHI
LDX
PLO
SEP

RB
R2
RE
RE
RB
$20
2F

RB
$0D

1B

RB
R5

1Get RB.O0 buffer pointer address low
sPush to save on stack (no decrement)
sjLoad 00 byte into D register

sPut in RE.0 to initialize count
1Skip into routine

s Increment count by 1 for each
character

1Load a character @ M(R(B))

sCompare with ASCII for a

' space

3If = 20, then branch to exit ==
3 RB is past end of string

1Get same non-gpace character (RB+1)
sCompare with ASCII for a

§ carriage return

3If # 0D (or 20) then branch to

3 count & test next character
1Get count in RE.O

sPut in RE.1 to pass back from sub
tPop saved buffer address

jRestore RB.0 to address the string
jReturn with length in RE.1/RE.0
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'*I*ﬂ**ﬁﬁ**%ﬁﬂ*%*&*ﬂﬂ**ﬂﬁ#****ﬂiﬁ*l**ﬂ**ﬁﬁ*l*******ﬂ***ﬁ**ﬁ*ﬁ!*

3 MNESCH1 MNEMONIC SEARCH
,ﬂﬁ*ﬂi*%*Hﬂ%****%***ﬂ****i#***ﬂ**ﬁ***&ﬂ*ﬂ**********************
3 INPUT: -= RB addresses mnemonic ending with CR or space
’

3 OUTPUT: == RDs0 = 0 = success/RD # 0 = failure

} RF addresses mnemonic in table on success

H

3 CALLS: == LEN

]

H

H
3 CHANGES:

CALLED BYs == ASHMBLR

== RDs0 RE RF (RB not changed)

'ﬂ*****ﬂ*ﬂﬂ****ﬁ****ﬂ*****l****************************#**ﬂﬁ**ﬁ

O48E MNESCH:

8F

1H:

2Hs

2Hs

F8 LDI sLoad high address of mnemonic
08 3 table into D

BF PHI RF jPut in RF.1 (RF.1 = 08)

F8 1LDI 1Load low address of mnemonic
00 ) table into D

AF PLO RF sPut in RF.0 (RF = 0800)
D4 SEP R4  3Call LEN. Returns length of
ok 1 string @ M(R(B)) in RE.1

9E GHI RE s1Get length from RE.1
AE PLO RE ;Put in RE.0 as a loop counter
9F GHI RF ;Transfer RF into RC. Thisg will
BC PHI RC $ preserve the value of RF. RC
8F GLO RF 3 will be used to meke the
AC PIO RC ; comparison with bytes @ M(R(B))
8B GLO RB 3Get low address of buffer pointer
52 STR R2 jPush to save start address of string
EC SEX RC X = Co M(R(X)) will be used
for comparing

4B ILDA RB 3Get a byte of string. Advance RB
F3 XOR ;Compare with byte in table @ M(R(C))

3L BNZ 2F ;If #, then comparison fails. Branch

BO 3 to set RD.O # 0

1c INC RC jAdvance pointer RC to next table
character

2E DEC RE jDecrement count in RE.O0 (# characters)

8E GLO RE ;Test the count in RE.O0

3A BNZ 2B If # 0, then branch to continue

AO t comparison. Else comparison

succeeds
0C LDN RC 1Get byte @ M(R(C)) on success
FD SDI  $20 jSubtract 20 - M(R(C)) to see if

20 ] entire mnemonic was checked

3B BM 2F  3If negative, then M(R(C))> 20 and

BO ;1 comparison fails. (Also D#0 here)
F8 1IDI tLoad 00 byte into D for marking

00 j the successful comparison

AD PLO RD sPut 00 or not 00 into RD.0 as fla
02 LDN R2 ;Pop stack (X#2 so LDX is improper%
AB PLO RB jRestore RB.0 buffer pointer address
8D GLO RD 3Get success/fail flag in RD.O

3L BNZ 2F 3If # 0 then comparison had failed
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B
B6
B?
B8
B9
BA
BB
BC
BD
BE
BF

okco
c1

2H1

B?
D5
ir
ir
ir
iF
iF
1F
OF
FE
3B

97
D5
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SEP
ING
InNG
INC
INC
INC
INC
LDN
SHL
BNF

SEP

ERETEIER

=
==}

R5

i and test will continue

jReturn. RD.0 = 00 indicates success
sIncrement RF 6 times to address

3 next entry in the mnemonic table.
] Though apparently redundant,

] this is the fastest, shortest

3 way to inecrease RF x 6!

3

1Load byte @ M(R(F))

$Shift left to test if MSB = 1

3If DF ¥ 1 then branch to continue

3 search., (FF marks end of table)
jReturn. RD.0 7 0 marks failure

 FeR R B I TS AR 0 0 B0 30 000 3 0 D0 36 S 20 0B 0 I D B B 0 A I

3 OPSCHi

1 INPUT:

QUTPUTs

CHANGES

¥
]
]
3 CALLED BY$§ ==
]
]
’

OP CODE SEARCH
'*******lﬂ***************ﬂ********************i****ﬂ***ﬁl****N*

== RE.1 holds op code (possibly modified)

== Same as MNESCH

3096 453038 5 3000 000 S0 B0 030 536 046 35300 20036 20 40 S H A0 0 040 3 0 000 30 9000 5 00 40 020 40 30 40 30 20 0 Wk 0 B0 0 B 03T

o4Cc2 OPSCH:

ch
G

68
c?
c8
c9
CA
CB
cC
cD
CE
CF

04D0
Dl
D2
o
D5
D6
D?
D8
D9
DA
DB
DC
DD
DE
DF

OLEO
El
E2

1Hs

2Hs

DISASM

-= RD.0 RF
EF SEX RF
F8 LDI
08
BF PHI RF
F8 LDI
00
AF PLO RF
4F LDA RF
FB XRI  $FF
FF
32 BZ 2F
DF
iF INC RF
1F INC RF
iF INC RF
iF INC RF
9E GHI RE
F3 XOR
1F INC RF
3L BNZ 1B
c9
AD PLO RD
2F DEC RF
2F DEC RF
2F DEC RF
2F DEC RF
2F DEC RF
2F DEC RF
D5 SEP RS
F8 LDI
o1
AD PLO RD
D5 SEP R5

$1X = F. R(F) will address table entries
1Load 08 byte into D register

sPut in RF.1
sLoad 00 byte into D register

sPut in RF.0. RF=0800=top of table
sLoad byte from table, advance RF
jCompare with FF end of table

3 marker

3If =, branch to exit - search

3 hasg failed to find op code

s Increment RF x 4 to address the

$ op code field in table entries
' n " " "

' " " " "

jGet op code being searched from RE.1
jCompare with op code in table @ M(R(X))
1RF < RF+1 addresses next field

1Branch if comparison fails, otherwise

3 continue - op code found

jRD.0 = 00, MNark successful search
sDecrement RF x 6 to address

' the mnemonic of the

i field in which the

H op codes matched

tReturn = success
sLoad 01 byte into D register

sPut in RD.0. Flag the fallure
sReturn -~ failure
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'************ﬁ******ﬂﬁ******ﬁ*ﬂ*****ﬁﬁ**%ﬂ*ﬂ*#****ﬂ***ﬂ**i***ﬁﬁ

3 REGTAB: REGISTER OP TABLE
§ F IR SIS SRS S SR M2 00 SR A I A e 300 SR SR

O4E3 REGTAB: OF sEach of these bytes
E4 1F 3 represents an instruction
E5 2F H group that requires a
E6 Ly i register to be specified
E7 5F H in the second hex digit
E8 6F 1This table is used by both
gﬁ gg 3 the assembler and disassembler
EB AF tNote that the hex digit F is
EC BF 3 used here to hold the place
ED DF 1 where the register digit will go
EE EF
EF 67 ;Entries match mnemonic table op codes

§ R B AE S 3HAE B  d d  BR SR I A RS B S S I S S R e S

3 DUMMY DUMMY MNEMONIC ENTRY
§ SRR I BRI B S0 0 T SR RIS O I SR 46 30 S 23 S0 B0

O4FO DUMMYs 2D s Dummy entry for illegal
Fi 2D 3 op code 68, Simulates
F2 2D 1 an entry in the mnemonic/
F3 20 3 op code table and will
FL 01 s cause "e==" o be output
F5 68 t+  to the buffer.

§ AR IR A A B0 I I R R IR 00 R B R A S R

3 ERRMSGs ERROR MESSAGE
P T S S S T e

O4F6 ERRMSG: 45 §ASCII codes for “ERROR"
52 3 ending with a null (00)

P 8 22 i bytEO

F9 F ' " "

FA 52 3 " " "

FB 00 ; " "
‘*****ﬂ*ﬂi***ﬂﬂ**#*******ﬁ*ﬂ**%*****&*ﬂ*ﬂ*%**i&iﬁ&ﬂ*ﬁ#**ﬂ****ﬁ%
3 NUMBER3: CONVERT NUMBERS
l**ﬁ****ﬁ**!***I*ﬂ**ﬁ&****&**l****i***ﬂ*ﬁ*ﬂ***ﬁ********ﬁ*******
3 INPUT: == RB addresses hex string ending with CR or space
{
3 OUTPUT:s == RD = 16 bit equivalent of that string
H RF.0 = 0 = no errors
' RF.0 ¥ 0 = gtring >4 digits/also RD=0000 if RF.07#0
t RB addresses byte after string unless RF,0#0 then
i RB unchanged
§
3 CALLS: == ASCHEX LEN
H
3§ CALLED BYs == ASMBLR

i
§ CHANGES: «= RB RD RE RF
L e

0500 NUMBER: F8 LDI t1Load 00 into D register
01 00
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02
03

ol

06
07
08
09
OA
0B
oc
0D

OE 1H:
oF

0510

1B 2Hs

1E 3Hs
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BD PHI

AD PLO

D4 SEP

9E GHI
AF PLO

FD SDI

BPZ

D5 SEP

F8 LDI

BE PHI

AE PLO

GLO
BZ

SHR
BDF

LB LDA

BE PHI
2F DEC

4B LDA

AE PLO
2F DEC
D4 SEP

8D GLO
BD PHI
9F GHI

AD PLO

8F GLO
3A BNZ

D5 SEP

RD
RD

Rl

RE
RF
B4

iF
R5

RE
RE
RF
3F

2F

REB
RE
RF
RB

RE
RF
R4

RD
RD
RF
RD
RF
iB

R5

jPut in RD.1

sPut in RD.0 == initialize result

= 0000

sCall LEN ==~ determine length of

; numerical string @ M(Q%B))--

3y returns byte count in RE.1 & RE.0
1Get length returned in RE.1

jPut in RF,.0

jSubtract 4 = LEN. If negative

: then LEN> 4 and is illegal

3 If positive (LEN<4) then branch
3 to continue NUMBER sub

sReturn. RD=0000 default value for
illegal #

sLoad D with ASCII code for

$ a zero

sPut in RE.1

sPut in RE.O0., RE=3030 to initialize
1Get string length

$1If = 0, branch directly to process
' ASCII codes in RE

1Shift right to test length even or odd
s If DF=1 then length is odd. Branch
1 to do only the single hex digit
;Get a character (hex) from buffer
jPut in RE.1 to pass to ASCHEX sub
;Decrement string length

jGet a character (hex) from buffer

sPut in RE.0 to pass to ASCHEX sub
sDecrement string length

31Call ASCHEX to process the

3 ASCII codes in RE.l1 & RE.O

;Get low 8 bits of RD

tPut in RD.1. Make room for answer
sGet hex value returned in RF.1
$Put in RD.0

s Test length to see if done yet

sIf # 0., then branch back to

' do another byte

sReturn. Value in RD over 16 bits

t**ﬂ*#*ﬂ*ﬁ************ﬁ*ﬁ*ﬂ***********“*ﬁ*****ﬁ*ﬂ**ﬁ****#ﬂ#****

VALID HEX TEST
B

RE.1 = ASCII code for testing

3 VALHEX:
3 INPUT:
H

1+ OUTPUT:

t CALLED BY: ==
L]

3 CHANGES:

RF.0 = 0 = legal hex number 0-9, A-F
RF.0 ¥ 0 = not legal hex number

ASMBLR

RF.0

'***********ﬁ*********i*ﬁ**%ﬁﬂ***ﬂ************ﬂ***ﬁ***********ﬁ

0529 VALHEX: F8 LDI
2A 00
AF PLO

2B

RF

jLoad D with 00 byte
sPut in RF.0 to initialize flag
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20 9E GHI RE $Get ASCII code from RE.1

2D FD SDI  $46 jSubtract 46 = ASCII. If positive

2E L6 ¢  then ASCITI <46

2F 3B BM 1F s Branch on minus to signal
0530 Lo ;3 error. (47<ASCII=FF)

31 9E GHI RE 1Get same ASCII code from RE.1

32 FD SDI  $40 jSubtract 40 = ASCII. If positive

33 4o H then ASCII = 40

34 3B BM 2F  jBranch on minus to signal

35 L1 }  success. (41=ASCII<46)

36 9E GHI RE jGet same ASCII code from RE.1

37 FD SDI  $39 jSubtract 39 - ASCII. If positive

38 39 1 then ASCII < 39

39 B BN iF s Branch on minus to signal

3A 0 3 error. (3A = ASCII<L40)

3B 9E GHI RE ;Get same ASCII code from RE.1
053C FD SDI  $2F jSubtract 2F - ASCII. If positive

3D 2F s +then ASCII £ 2F

3E B BM 2F  3Branch on minus to signal

3F 1 1 success. (30 € ASCII £ 39)
0540 1H: 1F INC RF jRF+1 signals failure (RF.0 # 0)

L1 2H:s D5 SEP R5 jReturn (RF.0 = 0 = success/

RF.0 # 0 = failure)

’*************ﬂ*ﬂ***ﬁﬂ&*ﬂ*ﬂ*********ﬁﬂ#ﬂ%ﬂ***ﬂ************ﬁ****

3+ REGSCH3s REGISTER OP CODE TABLE SEARCH
’*********H**ﬂ*ﬂ******i*****&ﬂ**%**&iﬁ**********ﬁ**%ﬂ**ﬁ*ﬂﬁ*ﬂ*i
31 INPUT: == RE.1 = ASCII code for searching

L]

{ OUTPUT: == RF,0 = 0 = failure == not in table

§ RF.0 # 0 = success == in table

4
3 CALLED BY: == ASMBLR DISASM

i
3 CHANGES: ==~ RD RF.0
B e bl

0542 REGSCHs FE LDI  $04 jLoad high address REGTAB
0

L BD PHI RD 3Put in RD.1

Eg F8 1LDI $E3 jLoad low address REGTAB

E3

L7 AD PLO RD sPut in RD.O
tB F8 IDI $0D j3Load table size (# bytes)

9 0D
LA AF PLO RF jPut in RF.0 as a loop counter
LB 9E GHI RE jGet the code being searched
Le 52 STR R2 jPush onbo stack for the comparison
LD 1Hs 4D ILDA RD 3Get a byte from table

4E F3 XOR sCompare with byte on stack

LF 32 BZ 2F 3If =, branch to exit

0550 55 s match found

51 2F DEC RF sDecrement loop count

52 8F GLO RF s Test count in RF.0

53 RA BNZ 1B ;If # 0, branch to continue

sh D i searching

55 2Hi D5 SEP R5 jReturn. (RF.0 # 0 = success/

RF.,0 = 0 = failure)
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§ SRR T S RS S SR AR I R 3R A SR I B S S S S

3 FIXRC: FIX OP CODE/LENGTH IN RC
'**********ﬂ*******ﬁ@**ﬂ*ﬂ%ﬂﬁ*#*ﬁﬂ*ﬂ*#*ﬁ%*ﬂ%ﬂ******ﬁ***i****ﬁﬂ*
§ INPUTs == RF addresses mnemonic field in table

H

3 OUTPUT: == RC.1 = op code from table

§ RCs0 = length from table

3 RF addresses last byte of entry (op code)
]

’

CALLED BYs == ASMBLR DISASM

]
i CHANGESH == RC RF
§ 434003 S AP0 S LI A IS 20 S SR R S0 A 0 4 IS

0556 FIXRC: 1F INC RF  jIncrement RF to length field
57 1F INC RF 3 of mnemonic table entry
i " " "

58 1F INC RF 3 °

59 11’.\ INC RF § [ " L L]

5A FIXRC2: UF IDA RF sLoad length byte from table

5B AC PLO RC 3Put in RC.0 (= # bytes this instruction)

5C OF LDN RF jLoad op code byte from table

5D BC PHI RC $Put in RC.1

5B D5 SEP R5 jReturn (RF addresses op code)
‘*****ﬁ*****************ﬁ***ﬂﬁﬁﬂ*ﬂ*****#**ﬂ**ﬁ%**********ﬁ**i**
3 ADVRB: ADVANCE RB
‘**ﬂ%#**ﬁ******#*****ﬂ**********%ﬂ#*%#*******ﬂ***ﬁ*ﬂ********“**

INPUTs -~ RB addresses string ending with space o¥ CR

§
H
3 OUTPUTs -= RB addresses byte following the string
{

3 CALLED BYs == ASMBLR

$

§ CHANGES: == RB
§ AR LA R IR AR A SR R SIS0 B0 SIE S ST S0 S 1 0 3 30

055F 1H:s 1B INC RB sRB=- RB+1l to advance
60 ADVRB: OB IDN RB jLoad byte @ M(R(B))=-no advance
21 FB XRI  $20 jCompare with ASCII for space
2 20
6 32 BZ 2F ;If RB addresses a space, branch
6 6A i to exit
65 OB LDN RB 3Load byte ® M(R(B))-no advance
66 FB XRI $0D jCompare with ASCII for
67 ()] 3 carriage return
68 3L BNZ 1B 3If RB does not address a carriage
69 5F : return, then loop to advance RB
6A 2H: D5 SEP R5 jReturn. RB advanced past string
'********ﬂ**Hﬂﬂ***ﬂﬂﬂ*%ﬁ******************ﬁ%ﬁﬂﬁ*ﬂ%ﬂ%*ﬁ*ﬁﬁ*ﬂ****
3 OUTBUF3: OUTPUT TO BUFFER
A de b 3h Ab B 90 b R 20 30 20 96 35 36 20 20 30 30 3 30 37 3E S 40 4000 W 10 38 25 SR IE A0 40 30 3 30 20 db He 0 30 40 0 20 30 S0 20 30 J0 e e d e Lk e
3 INPUT: == RB addresses buffer where output is to go
H RA addresses byte to output
H
3 OUTPUT: == ASCII equivalent (2 bytes) @ M(R(B))
3 RB=~ RB+2/RA =~ RA-+L
H
3 CALLS: ==  HEXASC
H
s CALLED BY: == DISASM

i
s CHANGES: == RA RB RE
§ A6 A B B A SR RS RS R SISO



056B OQUTBUF: 4A
6c BF
6D OUTBUF2s Db
6E oL
6F 3E
0570 9E
71 5B
72 1B
7 8E
7 5B
75 1B
76 D5

LDA
PHT
SEP

GHI
STR
INC
GLO
STR
INC
SEP
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RA
RF
R4

RE
RB
RB
RE
RB
RB
R5

3Get M(R(A)). Advance RA
iPut in RF.1 to pass to sub
3Call HEXASC. Returns ASCII
3 equivalent of byte in RF.1
H in RE.1 and RE,.0

$Get first digit in RE.1
jStore in buffer @ M(R(B))
sAdvance RB

1Get second digit in RE.O
;Store in buffer @ M(R(B))
jAdvance RB

s Return

§ AR IRIE AR IR S0 B I R 000 20 03I R IR SR IR I I S 2 4

PRINT ERROR MESSAGE
g AR AR A S IS SR 2 B S SIS IR S5 SR S5

RF addresses message in ASCII ending with 00

3+ ERRPNT:
sy INPUTs -
QUTPUT: -

i
H
i
3 CALLED BYt ==
H
3§ CHANGES3 -
]

0577 ERRPNTs

7A 1H:

Message transferred to buffer via RB ending with 0D

ASMBLR

RB
AW TR AR A A I 030 A AR I A0 30 H0E 0 I A0 040 320 30 IR A0 R R AR A R 0 B0 2 3

r8
00
AB
LF
5B
1B

3A
7A
2B

r8
0D
5B
D5

LDI
PLO
LDA

STR
INC

BNZ
DEC
LDI

STR
SEP

$0
RB
RF

RB
RB

1B
RB
$0D

RB
R5

;Load 00 byte into D

jPut in RB.0 to reset buffer pointer
;Load a character @ H(R(F
1Store in buffer @ HN(R(B
t Increment buffer pointer

1 If byte stored was not 00, then
H branch to store another
jElse decrement RB to the 00 byte

jLoad ASCII for a carriage

' return

1Store in buffer as end of string
sReturn

§ PRI R I 3 SR A AR 3 S I SRR SRR S I S 0 00 23 S

ASSEMBLER MAIN LOOP

3 AR S A R AR R R B A R S AR 3 S 36 S AR B N S e 0 20 AR 0 A S 38 3 AR A
RA not altered by user

RB.1 set to input buffer page (00=top)

RC RD RE RF free for use

3 ASHBLR1

3 INPUT: e
H

OUTPUT: -
CALLS: e

CALLED BY: ==

e we W we we we we we we

} CHANGES§ ==

Input in buffer assembled @ M(R(A))

ADVRB DESCRB DISASM ERRPNT FIXRC LINFD(optional)
MNESCH NUMBER REGSCH VALHEX

USER ROUTINE

RA (if address is input) RB.O RC RD RE RF
T L L L L L L e ey
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0600 ASMBILR:

01
02
0

of
05
06
07
08
09
0A
0B
oc
0D

0E
OF

0610
11

12
1
1%
061
12
17
18

1Hs

2Hs

2Hs

F8
00
AB
Dh
ok
60
8r
FB
02
3A
17
Dh
05
00
8F
3A
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LDI
PLO
SEP
GLO
XRI
BNZ
SEP

GLO
BNZ

GHI
PHI
GLO
PLO

BN

GLO
XRI

Bz
SEP

GLO
BNZ
SEP

SEP

GHI
PHI
SEP

GLO
BZ

SEP

SEP

DEC

$00
RB
RY
RF
$02
2F
RE

RF
ERR2

RD
RA
RD
RA

iB
RF

ERR2
R4

RD
ERR2
R4

R4

RC

RY

2F

Rl

RY

RB

;Load 00 byte into D

gPut in RB.0. Reset buffer register
jCall DESCRB. Returns RF.0
3 with type of string
3 found
1Get type of string
sCompare with code for
nunerical hex string
3If # 2 then not a hex string
1 branch to skip address fixing
sCall NUMBER. Returns RD
3 with binary equivalent
; and advance RB past string
:Test error flag on return
}If # 0, then branch to output

H error mesgsage and end

s Transfer RD to RA, RA will
i address final assembly

3 area. RA should not be
; changed by user program

t1Loop back to start again.

3 Address fixed in RA

1Get type of string (502) from RF.0
;Compare with code for a

§ carriage return

3If = CR, then branch to error.

3 Must have mnemonic here

;Call MNESCH to locate mnemonic

; @ M(R(B)) in mnemonic table

sGet success/fail flag in RD.0

;If # 0, then branch to error. Search
3 was not successful

31Call ADVRB. RB is advanced

3 past the mnemonic string ending

: with either a space or CR

sCall FIXRC. Returns op code in RC.1
$ and length in RC,0 from table

i entry addressed by RF

;Get op code in RC.1

sPut in RE.1 to pass to sub

$Call REGSCH., Check if this op code
} will require a register specified
1 in the 2nd hex digit

sTest success/fail flag returned

3If RF.0=0 then branch, Op code

H is OK in present form

3jCall DESCRB to advance RB

3 to next string {gresumably a

¢ RN or N desgination)

1Call ADVRB to advance RB past

i the register designation (thus

1 disregarding the R or DEV or
whatever

s+RB addresses last byte of string



2H1

2H1
3H:

LDN
PHI
SEP

BLO
BNZ

SEP

GLO
STR
GHIL
ANI

OR
PHI
GHI
STXD
GLO
STXD
GHI
STR
INC

DEC

GLO
BZ

SEP

GLO
XRI

BNZ
SEP

GLO
BNZ

DEC
GLO
BZ

GHI
STR
INC
GLO
STR
IRX
LDXA
PLO
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RB
RE
R4

RF
ERR2

Rl

$02
ERR1
R4

ERR1
RC
RC
2F

RD

RD

RA

31Get that byte (in ASCII form)

sPut in RE.1 for testing

3Call VALHEX to check if +this

3 is a valid hex digit. At this

H point it must be a hex digit

$Get success/fail flag returned in RF.

;If RF.0 # 0 then branch to

3 error. lMust have a valid
register specification here

$Call NUMBER. Returns RD as 16 bit

¢ equivalent of string @ M(R(B))

1 and advances RB.

3Get single digit (ON) from RD.O
sPush for combining with op code

31Get the op code from RC.1

sLogically AND with FO hex thus

} stripping off the last digit

$OR in the new 2nd digit on stack
sPut new op code back in RC.1

;Get assembly address RA.1

jPush to save on stack (R(X)<=-R(X)=1)
t1Get assembly address RA.OQ

1Push to save on stack (R(X)=-R(X)=1)
3jGet final op code in RC.1

;Store in memory @ M(R(A))

jAdvance RA

jDecrement RCs RC.0 has instruction
length

s Teat RC.0

3If RC.0 = 0 then assembly is complete
H Branch to restore RA 7 continue
;1Call DESCRB. Advances RB to

t next string which at this point
H must be a hexadecimal

31Get string type returned in RF.0
sCompare with type code for

3 a hexadecimal (02%

31 If not hexadecimal ($) indicator,

$ branch to error

31Call NUMBER. Returns equivalent

3 16 bit value in RD and advances
H RB past the string

1Cet success/fail flag in RF,.0

$If RF.0 # 0 then string too large.

' Branch to error (>4 digits)
sDecrement instruction length in RC.0
1Test length

$If = 0 then only single byte

1 argument required. Branch

t1Get high byte of argument in RD.1
;Store in memory @ M(R(A))

sAdvance RA

;Get low byte of argument in RD.O
$1Store in memory @M(R(A))=-no increment
sPoint R(X) to saved RA on stack

sPop RA.O

jRestore old RA.0 address
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066E FO LDX ;Pop RA,1
6F BA PHI RA  j;Restore old RA.1 address
0670 D4 SEP R4  ;Call DISASM to echo the
71 07 ' assembly for verification
72 00 :+ printout. (Optional)
73 D5 SEP R5 sReturn. End ASKMBLR liain Loop

ERROR HANDLER

0674 ERR1: 60 IRX tPoint to savel RA.0 on stack
75 72 LDXA 3$Pop RA.O
76 AL PLO RA  ;Restore assembly address RA.0
77 FO LDX 1Pop RA.1
78 BA PHI RA jRestore assembly address RA.1
79 ERR2: F8 1IDI sLoad high address of
7A ok :  error message
7B BF PHI RT sPut in RF.1
76 F8 1bI 1Load low address of
7D Fé6 { error message
7E AF PLO RF sPut in RF.0
7F D4 SEP R4  ;Call ERRPNT. Output message
oégg 05 3 to buffer for printing
i
82 D4 SEP RY4 ;Call LINFD., Optional call
8 ?? 3 to be used if your system
8 29 : has such a subroutine
85 D5 SEP RS sReturn. Assembly aborted

1 B T e e L T e R e e L T ]

3 DISASH: DISASSEIBLER MAIN LOOP

] oAb e A e S A R R R R A S e T A S R R SR R SR A A S SR R A SR Al R SRR RS S AR SR b Sh 423
3 INPUT: -= RA addresses any 1802 instruction

; RB,1 set to input buffer page (00=top)

H RC RD RE RF free for use

H

s OQUTPUT: == I(R(A)) disassembled into buffer ending

H with CR ($0D)

H RA advanced to next instruction

;

3 CALLS: == FIXRC HEXASC OPSCH OUTBUF OUTBUF2 REGSCH
i

3 CALLED BYs == ASMBLR USER ROUTINE (optional)

¥
; CHANGES# ~- RA RB.0O RC RD RE RF
R T R S s

0700 DISASI: F8 LDI $1F ;load address of buffer end

01 iF 1 into D register (1F)
02 ABE PLO RB 3Put in RB.0. Initialize pointer
to end
03 EB SEX RB 33X = B to keep the coming loop short
o4 1iHi F8 1LDI $20 jLoad 20 byte (ASCII for
05 20 3 a space)
06 73 STXD jStore @ M(R(B)). RB<RB-1
07 8B GLO RB t1Test RB.O
08 30 BNZ 1B ;If # 00 yet, loop to £ill buffer
09 ok §  with "20" bytes (except ®RB.0=00)
0A OA IDN RA 3Get instruction @ M(R(A)

0B BE PHI RE sPut in RE.1 to pass to OPSCH



1H:

2Hz

2Ha

3Hs

SEP

GLO
Bz

LpI
STR
GHI
XRI
BNZ
LDI
PHI
LDI
PLO
BN

ANI
BNZ
LDI
STR
GHI
OR

PHI
SEP
GLO
BNZ
SEP
DEC
DEC
DEC
DEC
DEC
LDT
PLO
GLO
XRI
BNZ
LDI

PLO
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Rl

RD
IF
$OF
R2
$68
2F

3F
$Fo
2F

$07

RB

135

$Call OPSCH == search op codes
3 returning RF with address of

s entry if found (also X=2 again)

1Get success/fail flag from RD,0

3If = 0 then branch. Op code
H found in table
;Load OF byte into D

;Push for later combining with op code

sGet op code from RE.1

1Test if = 68 the only illegal
3 1802 op code

s If not, branch to skip the

§ next special handling
sLoad address of dummy

H table entry

sPut in RF so to fake a

1] successful search for the
3 68 code or debug error
H

sBranch to simulate a successful
$ search with RF @ dummy entry
3Strip last digit of code g#éa}
s ‘o test first digit = 6

$If # 0 then first digit # 6

1 branch to skip next part
;Load 07 byte

jPush in place of OF on stack
sGet op code held in RE.1

JO0R to form NF or N7 byte
sPut back in RE.1

$Call OPSCH. If it fails

' this time then there is a
3 problem with the op code table
;Get success/fail flag in RD.O

$If # 0 then search failed. Debug
op codes in table
3Call FIXRC., Returns raw
3 op code in RC.1 (not needed)
3 and length in RC.0
sDecrement RF 5 times to reset to
3 address of mnemonic in
H table . .
n " il

¥
" " " "

H

;Load tab address in buffer for
3 norma.l mnemonics

sPut in RB.0O

jGet length code from RC.O
tTest if this is a 3 byte

F instruction code

+If not, then branch to skip

: next tab (needed for 16 char. line)

jLoad tab address in buffer for

3 3 byte ingtruction mnemonics
;Put in RB.0 (long lines may need
no adjustment)



2Hs

8
ok
AE
Ly
5B
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DI

PLO
LDA
STR

1B 1INC

2E DEC

8E GLO
A BNZ
8

D4 SEP

05

L2

8F GLO
2 BZ
3

F8 LDI
OE

AB PLO

F8 ILDI
5o,

5B STR
1B INC
OA LDN
BF PHI
D4 SEP

8E GLO
5B STR
F8 LDI

AB PLO
9A GHI
BF PHI
D4 SEP

8A GLO
BF PHI
D4  SEP

F8 1DI

AB PLO
D4k SEP

8¢ GLO
FB XRI

30 BNZ

ol

RE
RF
RB

RB
RE
RE
2B

RY

RF
2F

$OE
RB
$52
RB
RB
RA

R4

RB
R4

RC

2F

1Load O4 byte into D register

tPut in RE.O0 as loop counter
;Load a character @ M(R(F;}
tStore in buffer @ M(R(B)

s Increment RB buffer pointer
jCount # characters transferred
$Test count in RE.O

3If # 0 branch to transfer 4

H characters always

sCall REGSCH. RE.1 holds the

3 op code as found in table.

§ Check to see if RN needed,

sGet success/fail flag RF.0

;If = 0 then RN not needed., Branch
t+  to skip RN output

t1Load tad for RN outputb

sPut in RB,0 buffer pointer
tLoad ASCITI code for R character

;Store in buffer @ M(R(B))

t$ Increment RB to next byte

1Get instruction @ M(R(A))

sPut in RF.1 to pass to sub
31Call HEXASC to convert digit to
§ ASCII. Note, RE changed

3 by this call,

;Get the digit from RE.O

sStore in buffer just after R
;Load tab address for the address
: output (should not be changed)
tPut in RB.,0 buffer pointer

;Get high byte of address

tPut in RF.1 to pass to sub

sCall OUTBUF2 to output

H RA.1 address

s1Get low byte of address
sPut in RF.1 to pass to sub
3Call OUTBUFZ to output

H RA,0 address

;Load tab for printing the
] op codes

sPut in RB.0 buffer pointer
;Call OUTBUF to print the

H op code

3Get byte count in RC.0
sTest if = 2 in which case a

3 single byte argument is needed
s If # 2 then branch to skip
] outputting the argument
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7B F8 1IDI  $O0E j;Load tab for single byte
7C OE : argument (just after mnemonic)
7D AB PLO RB jPut in RB.0 buffer pointer
7E D4 SEP R4  jCall QUTBUF to print the
7 05 1 argument

0780 6B
81 20 DEC RA  jReset RA to address same byte
82 2H F8 1DI $07 jLoad tab for printing
8 07 ' arguments after op codes
8 AB PLO RB sPut in RB.0 buffer pointer
85 30 BN 2F s Branch into the next loop
86 8A ] to start
87 3Hi Db SEP R4 3Call OUTBUF. Output
88 05 H byte @ M(R(A)) to buffer
89 6B 3 as long as RC.0 # 0
8A 2H: 20 DEC RC jCount # bytes output
8B 8¢ GLO RC 1Get count in RC.0
8c 30, BNZ 3B 3If # 0 branch to output
8D 87 3 a byte to buffer
8E F8 IDI $10 jLoad tab for carriage
8F 10 H return

0790 AB PLO RB ;Put in RB.0 buffer pointer
91 F8 1IDI 30D ;Load ASCII for a
92 0D carria%e return
93 5B STR RB ;store @ M(R(B)) in buffer

ok D5 SEP R5 jReturn, Disassembly complete

¢ MR AR R R A R I SRR R S S A R I S S

3 MNEMONIC OP CODE TABLE
B e L LR e
; FORMAT: - 17273/ 857867
Mnemonic Ing OpCode
- Bytes 1 = 4, In ASCII with spaces (hex 20)
to fill to 4 bytes if needed.

i
MNENONIC s

LENGTH: == In hex. DMNumber of bytes required by this
instruction. For example, short branches = 2

OP CODE: == 1802 operation code in hex. Register
reference types ("RN") have hex F as second digit.

§

5

'

H

H

H

H

;

H

3 NOTES: == End of table must be hex FF byte. Add the

H followinﬁ two entries to enable CALL and RETN
i 084E 43 41 ¢ 4C 03 D4 CALL

; 094A 52 45 54 4E 01 D5 RETN

3 These replace NBR and NLBR but may be added

} to the end of the table alternatively. Also,
: RSHR and RSHL are missing. These too may be
i added to the end of the table of by replacing
3 other duplicate mnemonic entries,

i
1
H
H
i
H
;
H

OMMM 52 53 48 52 01 76 RSHR (=SHRG}
OMMM 52 53 48 L¢ 01 7E RSHL (=SHIC

These omissions keep the table to a convenient
2 page length, but it may be expanded to any
size to accommodate the full mnemonic set,

Fedb e 40 3 40 4F J0 30 T AR A0 2E 3 4 S0 S0 R S 3 T A0 30 5 30 400 40 30 36 20 S0 00 SE 0 S0 240 30 AR 30 50 30 50 0 S0 0 S e 0 SE AR R 4RI R S0 S04
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0800
0806
080c
0812
0818
081E
0824
082A
0830
0836

osgc
082
0848
08LE
085k
083A
0860
0866

086C
0872
0878
087E
0884
0884
0890
0896
089C
08A2

08A8
08AE
08B4
08BA
08co
08cé
08cc
08D2
08D8
08DE

0BEY
08EA
08F0
08F6
08FC
0902
0908
090E
091k
091A

0920
0926
092¢
0932
0938
093E
o9Lk
094A
0950
0956

41
53
53

3

4?
50

0
IC
4c

bl 4o
Ll 4E
4E 43
45 43
52 20
51 20
5A 20
Ly 46
31 20
32 20

33 20
34 20

b9 53

by 58
54 58
i b3

3 4h 20

48 52
Lp 20
41 56
41 52
Lg 51
45 51

Ly 43
Ly b2
48 4¢
Lp k2
7 4C 4F
48 Lo
4e 4F
L8 Lo
L2 52
42 51

42 sA
42 Li

% it 5

5
53 L4LE
53 LE

20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20

20
L
20
20
20
20
20
LB
20
20

49
20
20
20
20
20
20
20
20
20

20

L6
20

i6

53 4B 50

Bg 42
42 LE 5

52

4G L2 4E 5A

01
01
01
01
02
02
02
02
02
02

02
02
01
02
02
02
02
02

02
02

00
oF
1F
2F

;1 IDL
$ LDN
s INC
1 DEC
P BR
1 BQ
1BZ
3 BDF
3Bl
3 B2

s B3

s BL

s SKP
$NER
3 BNQ
3 BNZ
$ BNF
3 Bl

$ B2
3+ BH3
t BNL
s LDA
$STR
3 IRX
s OUT
s INP
s RET
3 DIS

3 LDX
$STXD
sADC
$SD
1 SHR
§SH
31 SAV
s MARK
s REQ
$SEQ

s ADCI
$SDB
t SHL
3§ SMB
sGLO
1 GHI
1 PLO
s PHI
s LER
s LBQ

s LBZ

s LBDF
s NOP

1 LSNQ
3 LSNZ
s LSNF
3 LSKP
s NLER
s LBINQ
1 LBNZ



0950
0962
0968
096E
0974
0974
0980
0986
098¢
0992

0998
099E
09AL
09AA
09B0
09B6
09BC
09cz2
09c8
09CE

09D4
09DA
09E0
09E6
09EC
09F2
09F8
09FE
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Lhe k2 4E 46 03
he 53 49 45 01

ke 53 51
ke 53 5A

20
20

01
01

he 53 Lh 46 01

53 45 50
Eg hg 58

Ly 58
LF 52 20

hi 4E L.

58 4F 52
b1 uly By
53 b b2
53 48 52
53 4p b2
T
UF 52 49

i e 4o
2 49
B i 15
53 b b9
53 48 LC
2 % 4
2
i 7 &3
42 4p 20

L2 4o 20
rF

20
20
L1

20
20

01
01
01
01
01

o1
01
02
o1
02
02
02
02
02
02

02
01
02
02
02
02
02

O O 0O
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3 LBINF
1 LSIE
3 1SQ
1 LS2
1 LSDF
3} SEP
§SEX
s LDYXA
$OR

1 AND

s XOR
s ADD
§ SDBI
§ SHRC
$ SMBI
s LDI
s ORI
s ANI
3 XRI
sADT

$SDI

§SHLC

§1SMI

3 BPZ

1 BGE

§ BM

i BL

;1End of table marker



Answers to Exercises

1010 Little Indians

1. Because of the ease with which the binary number system coeffi-
cients 1 and 0 may be represented electrically.

2.a)15 b)11 ¢) 219 d) 230

3. a) 0110 0100 b) 0100 0000 ¢) 1111 1001 d) 0101 0111

Binary Arithmetic

1 and 2.
a) 1011 1100 = 188 b) 1100000 = 96 ¢) 0111 1111 =127
+ 0110 0110 = 102 + 010 1111 = 47 + 0000 0001 = 1

1 0010 0010 = 290 1000 1111 = 143 1000 0000 = 128

d) 1101 = 13 e) 1111 = 15 f) 1011 = 11
0101 = 5 0010 = 2 1101 = 13

0110 = 6 0101 = 5 1110 = 14

1001 = 9 1000 = 8 0111 = 7

10 0001 = 33 11110 = 30 10 1101 = 45

3. The unary number system base 1 would contain only one coefficient.

If we specify its only symbol to be a 1, then the decimal value 7
would look like this:

1111111 base 1 = T base 10
Here is the proof:

II11111 =1 X' 18 =1 % (1 %1 x1x1LH¢ 1 %])
EaeId =1 %0l 1 ¢T3 % 13
I'1t=1 %% 1%1%1)
IxP=1xAx1x1
1 sl | el D
1 x1t=1 %

I1x1t=1%x1

o onn
[

-3
H

140
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4,
a) 11111111 =255 b) 1010 1010 = 170 ¢) 1101 1011 = 219
— 0000 0001 = 1 — 0101 0101 = 85 — 1011 1101 = 189
1111 1110 = 254 0101 0101 = 85 0001 1110 = 30

The Hexadecimal Number System

1. a) 1101 1110 1010 1111 b) 1100 1010 1111 1110
¢) 1111 1010 1100 1110 d) 1011 1110 1010 1101
a)C6 b)F5 ¢) ACE6 d)89D2

a) TFB6 b) EA92 ¢) 2B68 d) 9EF4

a) 498 b) 10,751 ¢) 33,900 d) 61,936

a) 5,199,,/144F,,/0001 0100 0100 1111,

b) 61,134,,/EECE, /1110 1110 1100 1110,

¢) 53,142,,/CF96,,/1100 1111 1001 0110,

Sl

Fundamentals of Assembly Language
Alternate to Chapter 2 Erase 4096 bytes subroutine

LDI $2F ;Load the address 2FFF

PHI RE ;  into register RE
LDI $FF
PLO RE
SEX RE Set X = E
LOOP: LDI $0 ;Load 00 byte
STXD ;Store at RE 7 decrement
GHI RE ;Test RE.1 by comparing with
XRI $1F ; hex 1F
BNZ LOOP ;If # 1F then loop

RETN ;Else return (RE = 1FFF)



APPENDIX
O O O

A Mini Library

The idea of writing this 1802 manual led to the writing of the
assembler in Chapter 4. The assembler led in turn to the following sub-
routine library.

Some of these subroutines are quite simple—ADDIT and SUBTR,
for example—and have been included both for their usefulness and for
their instructive value. Many of the programming concepts discussed in
previous pages are utilized by these subroutines.

The more advanced routines such as DEQUE and INSORT may
take some time to study and understand.

Each routine is well documented and each has been thoroughly
tested using the assembler in Chapter 4 running on the author’s 4K
Cosmac VIP computer with an extremely makeshift, rather flimsy key-
board donated by a friend. Experimenting with computers does not nec-
essarily require expensive, fancy equipment.

Note that some of the routines call others, but that each performs
only one carefully defined function. This modularity is highly desired in
a subroutine library so that many programs may make use of the same
routines. Also, register use has been limited as much as possible for
compatibility with operating systems software. The programmer may,
of course, use whichever registers are available.

A library such as this will cut down programming time, and serious
programmers will want to add their own routines as these are developed.
Then, the next time a block of memory needs to be sorted, the debugged,
tested subroutine from the library may be trusted to do the job.

R SE3EFE 3040 3 340 040 04020 SE AR 4R S0 0E 3000 A0 JE IR 26 R IR0 33040 30 2 2 AR AR AR AT IR 0 AR SR R R A e AR AR b 3

i ADDIT: DOUBLE PRECISION ADDITION
H AF 3 Fed 304036 30 30 36 4090 TR 30 30 S0 30 4b 3038 04 303 203045 303 S0 S0 40 H A0 04 3030 40 SR A0 A0 0 00 230 030 35 30 e gt bR
3 INPUT -= RE = operand #1

RF = operand #2

OUTPUT: ~= RE< RE + RF using double precision
DF indicates if overflow occurred

3 CHANGES: == RE

H 3R S 0 303 40354040 30 0 30 38 4R S0 S0 40 2040 20 SR AE 2 202 050 20300 30 200 AR A 4R E R0 0 B R R AR SR AR SRR b

142
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ADDIT: GLO RE ;Get low byte operand #1
STR R2 sPush onto stack 2 M(R(2))
GLO RF ;Get low byte operand #2
ADD ;Add to byte on stack via R(X)
PLO RE ;Put result in RE.O
GHI RE 3Get high byte operand #1
STR R2 1Push onto stack 2 M(R(2))
GHI  RF 31Get high byte operand #2
ADC 1Add with possible carry to N(R(X))
PHI RE sPut result in RE.1
RETN s Return from subroutine
§ S SR R IR I AR5 20 2R 003 TR R0 A 300 0 4636 30 BR300 B R 580
3 SUBTR:s DOUBLE PRECISION SUBTRACTION
'*****ﬂ***********ﬂ'**-}t*dl‘*ﬁ'ﬂ%ﬂ-i!%***%#*ﬁ***ﬂ-*#****%****%*ﬂ*ﬁ*ﬁ*%*
3 INPUT: == RE = minuend
1 RF = subtrahend
i
; OUTPUT: == RE<== RE = RF using double precision
3 DF indicates if underflow (borrow) occurred
H
3 CHANGES:s == RE
H et e 30 30 0 30 6 4 3 40 3530 30 9530 5 0 A0 20 30 TF 0 4R35 30 040 S dF 36 20 30 3030 0 GF 2045 6 30 3 0 3030 0 0 10 AR 2E SR S0 dR S R A
SUBTR1 GLO RE ;Get low byte of minuend
STR R2 jPush onto stack @ H(R(2))
GLO RF 1Get low byte of subtrahend
SD ;Subtract from byte on stack
PLO RE iPut result in RE.O
GHI RE ;Get high byte of minuend
STR R2 sPush onto stack 3 M(R(2))
GHI  RF jGet high byte of subtrahend
SDE ;Subtract with possible borrow
ifrom M(R(X))
PHI RE t1Put result in RE.1
RETH tReturn from subroutine
H e b AR R0 AR SR R R AR R AR A R I R AR R AL AR SR SRR 202 20 S AR AR IR R IR SR AR 3 S0 S0 I B A
3 MULT1, MULTIPLY ROUTINE #1 (simple - slow)
’45****“*%-}%-IE*-!'r**'l'r‘!—t*%‘r%**é}ﬂ*****ﬁ*******-3(-*4{-****ﬂ'%%ﬁ**%iiﬂ".&***ﬁ'}**%
3 INPUT: == RF.1 = multiplicand
i RF.0 = multiplier
3
3 OUTPUT: == RE = RF.1 x RF.0 using successive addition
i
3 CHANGES: == RE RF.0
H FEAEAE AR A 30 20 A R 2 AR AR 2 A SRR A B AR SR A IR 2 SR A 2R R T S B R B S R S R S M R
MULTL ¢ ILDI  $0 1Load 00 byte into D
PHI RE sPut in RE.1 and RE.0 to initialize
PLO RE 3 the answer to zero
CGHI RF ;Get multiplicand from RF,1
STR R2 1Push onto stack @ M(R(2))
BR 2F sJump to begin loop
1Ha GLO RE jGet low byte of answer in RE.O
ADD sAdd to RF.1 value on stack
PLO RE sReplace result in RE.O
GHI RE ;Get high part of answer in RE.1
ADCI &0 tAdd possible carry by adding DF + 00
PHI RE sReplace result in RE.1
DEC RF sDecrement multiplier used as loop count
2H: GLO RF 1Get value of RF.0 multiplier
BNZ 1e 1If not yet = 00, loop to continue

RETH sReturn. 16 bit answer in RE
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p i F RG0SR AR TR SR R AR 3 4 3 T R S I S 2 RS R R A S S S I S e

; LULT24 [MULTIPLY ROUTINE #2 (advanced - fast)

1 e S0 28 3030 4R R0 A0 PR A 4 b S RS IR AR AR SR A A0 20 AE b 20 30 A IR A0 20 AR R AR S 30 35 30 JF I S IR0 SRR JF 02 2 bR
1 INPUT: == RF,1 = multiplier

' RF.0 = multiplicand

i

; OUTPUT: == RE = RF.0 x RF.1 using bit shifting

i
3 CHANGES: -=- RE RF
R R L e s B e e R

FMULT2 ¢ LDI 30 tLoad 00 byte into D
PHI RE sPut in RE.1 to initialize answer
GLO RF 1Get multiplicand in RF.0
STR R2 ;Push onto stack 9@ [i(R(2))
LDI 48 ;Load 08 into D
PLO RF ;Put in RF.0 as a loop count (old
$RF.0 on stack)
1H: GHI  RF ;Get multiplier from RF.1
SHR ;Shift LSE into DPF
PHI RF sPut shifted value back in RF,1
GHI RE ;Get high byte of answer into D
BNF 2F $If DF = 0 then jump to skip
snext instruction
ADD 1Add multiplicand on stack to
1D on DF =1
2H1 SHRC ;Shift D right with carry
PHI RE ;Put in RE.2, high byte of answer
GLO RE 1Get low byte of answer from RE.O
SHRC ;Shift with possible carry
PLO RE ;Put in RE.0 now double precision
tshifted right
DEC RF s Decrement loop count in RF.0
GLO RF 1Get loop count to test value
BNZ 1B sIf # 0, loop to test all eight
1bits of multiplier
RETN tReturn. 16 bit answer in RE
H b3 4E 2 20 0E AR E R AR LR I R4 B2 SRR AR AR S0 SRR AR S b 4o 35 A 26 3 E 2 SE 2 AR 35 30 20 25 30 3 R AR AE 2 R S0 HE
3 DIVIDE: DIVISION
H e ARSI S R A AR AR AR b S 2 3 A A e S A R A I R b A E Ak 2R AR 20 SRR AR 5 A0SR SR RIS 4R SR A0 SE 4 A0 S0 JE 420
3 INPUT: == RE = dividend (16 bits) '
3 RF = divisor (16 bits)
i
3 OUTPUT: -~ RD = RE/RF by successive subtraction
H RE = remainder
3 Divide by zero produces zero answer rather
; than an error
i
H

CALLS: == ADDIT SUBTR
H
t CHANGES: == RD RE

H FEH A 30 SRR IR AR 2040 2040 AR AR S 0 0 S 2RI 6 S AR AE G JH IR 3 AR SR AR AR AR AR R R I AR e e b e N

DIVIDE: LDI S0 ;Load 00 byte into D
PLO RD sPut in RD.0 and RD.1 to
PHI RD 3 initialize answer = 0000
GLO RF ;Test low byte of divisor
BNZ  2F 4If # 0, branch to continue
GHI RF ;jElse test high byte of divisor
BNZ 2F $If # 0, branch to continue

RETN tReturn on divide by 0. Answer =

0
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1H: INc RD s1Add 1 to answer on loop
2Ha CALL SUBTR j1Subtract RF from RE
BDF 1B ;Loop on positive result, DF =1
CALL ADDIT s1Add RF to RE on subtracting to
jnegative
RETH sReturn from subroutine

H FeAEARSE IR 3L AF 204 A0 T0 3030 20 IR I IR AR S SRR IR S A AR e I e S 2 2R SRR SR A A AR T SR R S S R R A A S A SR 2R

3 RANDLIl: RANDOII SEQUENCE GENERATOR

1 AR AR SE IR S S A AR R R SR b S R RS e e S R 1R R 4 2540 S0 0 30 JE R AR A SR 20 20 00 3 0 3 20 35 2 20 20 S 2 b 400 2020 Sp 20 SR 20
1 INPUT: == R9.1 = seed for start (any value)

i

3 OUTPUT: == Repeatable random sequences of 0-255 in R9.1.
3 Binary bits are more random toward the lSB's,
H Each number occurs once before sequence

H repeats (period 256)

3 CALLS: == MULT2 (optional MULT1)

3 CHANGES: -~ R9.1 RE RF

1 AR R A A e R R R A R A R S S AR A A B A I 2R R R AR S A R AR A R R

RANDEA & GHI R9 ;Get seed from R9.1
PHT RF t1Put in RF.1 to pass to MULT2
ILDI  $65 ;Load constant for multiplication
PLO RF t1Put in RF.0 to pass to MULT2
CALL [ULT2 tllultiply RE=< RF.1l x RF.0
GLO RE ;Get low byte of result in RE.O
ADI  §35 yAdd constant
PHI R9 ;Put in R9.1 as next # in sequence
RETHN ;Return from subroutine

i FAE AR A e S Al AR SR SR S 4R 20 S 0 S0 S E R R SR SR dE BRI 2 P e e 20 2R A R 20 0 R 3 0
3 CLEAR: FILIL: CLEAR / FILL LENMORY

H **'H-*#-Il-**%*ﬂ-****-IHI--H-*%?**‘:HE'li-****‘.i"J—ﬂ'*i‘?‘.l‘1?%‘!HHF-IS-3?iHE-*,E‘IH:E5?*%%***’!?%‘1‘.‘*45%**
3 INPUT: == RE = end address

; RF = start address (for RF< RE)

' RD.0 = byte to fill on call to FILL

i

3 OUTPUT: == lemory cleared or filled with bytes in RD.O

H Aborts on RF >RE

i

3 CALLS: == SUBTR

'
} CHANGES: == RD.0 (Clear only) RE RF

1 SR R S A T A S B I AR S AR SRS SRR S LR SR SRS AR AR 4 20 S0 4 4006 205 200 4R 4T SR AR B 02

CLEAR: ILDI 30 iLoad 00 byte into D
PLO RD sPut in RD.0 to hold erase byte
FILL:s CALL SUBTR jSubtract RE = RF. RE = # bytes
;to clear
Bl 2F i Branch on negative. RF> RE.
s Abort sub
INC RE jAt least 1 byte will be cleared
1B GLO RD sGet byte from RD.O
STR RF ;Store 2 M(R(F))
INC RF sAdd one to RF pointer to advance
DEC RE t Decrement byte count in RE
GLO RE s Test RE.0 count
BNZ 1B ;If # 0, branch to do another byte
GHI RE ; Test RE.1 count on RE.0 = 0
BNZ 1B 1If # 0, branch to do more bytes

2H1 RETH jReturn from subroutine



146

Programmer’s Guide to the 1802

H A3 A A A I A S IR A A2 AR AR SR 2R AT A A A 40 A A A A B AR S R A S SR R R R

3 MATIND:

IIATRIX ARRAY INDEXING FOR X.Y ARRAYS

] SR R SR A A S 2 S R A R A L 40 S B S SR AR A 0 S SR B S IR S 4R 20 22 R R S b

3 INPUT: -

OUTPUTs -

CALLS: -
CHAIGES: —-—

HOTES s e

M M we me ms WE ws R ws WS we wE mE WS we W ws WS W e =

FATINDs GHI
STXD
CALL

IRX
GLO
ADD
PLO
GHI
ADCI
PHI
GLO
SHL
PLO
GHI
SHLC
PHI
GHI
PHI
GLO
PLO

CALL
RETH

RD = base address (first element location) liatrix

RE.l =X inde}{
RF«1 = Y index
RF.0 = maximum X elements ((0,0) = first element

so an X dimension of 4 equals 5 maximum X
elements)

RE = address element (X,Y) Each element is a
2 byte double precision entry unless using
single precision option

[ULT2 (optional MULTL) ADDIT
RE RF

For single byte arrays skip multiply by 2.
String arrays possible by storing the address
of the string location as an array element.

To "DIMension" an array, call with max X,Y for
address of last element. RE + 2 is next
array base address.

L e e e e R Tt R L bt L L e R R R e o e i

RE ;Get the X index in RE.1
;jPush to save. Decrement R(X)
MULT2 siultiply RF.1 x RF.0 to create

jrow index
1Point to saved X index (old RE.1l)

RE ;Get low row index from multiplication
t1Add X index on stack

RE sPut in RE.O

RE s Then add possible carry to

30 : high row index in RE.1

RE ; " "

RE Shift RE left one bit position

using double precision to

H
H
RE ; multiply RE x 2. If single
RE H byte element array desired, this
' shift should be eliminated
RE : " "
RD ; Transfer base address in RD to
RF H RF to pass to ADDIT sub
RD 3 which will return final indexed
RF : array address in RE by adding
' RE + RF
ADDIT t1Add base address to index

j1Return from subroutine
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§ SRR R S R R A R S I A I I R R IR 23 SO I S I S SR A A R A

3 JIPSUB3 SCRT INDEXED SUB JUMP

H ii%ﬂ%%*-ﬁi&*******:2'-IHS"ﬁ'*4?4#*4!‘%'}1‘*%#ﬁ*%****‘.&-}ﬂﬁ&-ﬂr'}}‘.‘e*i?*******i?%**ii***ﬂﬂ*
3 INPUT: == RE.0 = sub index number 00-0F (i.e., 1 of

1 16 possibilities)

3 Sub addresses in SUBTAB jump sub table

H

3 OUTPUT: == Sub # N called -~ must end with RETH

3

3 CHANGES: == RE

§

3 NOTES: ~= SUBTAB may be expanded but must exist on same
3 page as JIPSUB. Advantage of this technique
H is its ROM-ability. Returns from subroutines
H are from called sub to main calling routine,
H not back to here! So JWPSUB must be called
) as a subroutine itself

H ********'ﬁ**‘H‘*'H-ﬂii****’.}%-ﬂ-*****1!1.“%%%?#*****ﬁ*****%***%{&%*i& AR dE AR

JMPSUB: GLO RE ;Get sub index number from RE,0
ANI  SOF 1Limit to 00-0F range to avoid crash
SHL ;lultiply x 2. Each entry in table
3is 2 bytes.
ADIT SUBTAB,. 0 jAdd base address of jump sub table
PLO RE ;Put in RE.0 forming address in table
GHI R3 ;Get high address of this page from
jthe PC register
PHI RE i and place in RE.1 to complete
$ the address
GHI R6 iPush the return (to main) address
STXD $ onto the stack thus creating an
GLO R6 : additional return address there
STXD H pointing the way back to the caller
LDA RE s Transfer the address in SUBTAB pointed
PHI R6 : to by RE into R6 which on the next
LD RE ; RETH will cause a false call to the
PLO R6 s desired sub
1H: RETH $Go to sub via RETN - false call &
ydefault entry
SUBTAB: .WRD SUE0 tAddresses of subroutines go in here
«WRD SUE1 ; llote that entries which are not
«WRD SUE2 } implemented contain the
«WRD SUB3 i address of the return instruction
«WRD SUBL ; in JIPSUB. This will cause a
«WRD SUBS H default execution of the RETH
«/IRD 1B H two times eliminating the
+WRD 1B § possibility of a crash caused
H

«WRD SUBS by this sub's operation.
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+VIRD
«WIRD
. ?;RD
+RD
«VIRD
«WRD
«WRD
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SUE9
SUBA
SUBE
SURC
1B

SUBE
SULF

i

jAdditionally, the entire table must
reside on the same page as

JIiPSUE unless the code is changed
to use double precision to form the
indexed address.

3 PR IR IR 400 AT SR AR IR SR IR IR AR A SR 40 41 4R AR AR 200 200020 A0 A0 A0 AP T I AR AR S 2R R AR SR SR S A Sh R R

THSERTION SORY

i IIiSORT:
INPUT -

QUTPUT: -
CHANGES -

INOTESs -

r ma e ms me e W we we me me e we

INSORT: DEC
DT
PLO

1H: Iiic
GLO
2TR
PLO
DEC
GLO
ADD
PLO
GHI
ADCI
PHI
LDt
STR

2H1 DEC

LD
S0

BPY

LDA
STR
DEC
DEC
GLO
BHZ
SKP

3H1 IIC

LDX
STR
GLO
STR
GHI
AOR

LR IR DR AR 20 3R AR SR 40 4 20004 4R 4 2R 4R S0 2R R AR 20 20 200 2R 20 SR AR IR AR AR AR AR SR AL SR AR R AR AR AR A S db S db SR SR SR B b

RE.1 = number bytes from 2 to 255 (hex FF)
RE.1 = 0 or 1 is illegal
RF = base address of bytes Lo be sorted

RE.1 bytes sorted at RF in ascending order

RC.0 RD RE RF

Fast, about 2 seconds for 255 bytes. If display
is memory mapped, sorting the display refresh
pace makes an interesting visable test.

RF
.2

HD

RE
RE
R2
RC
RC
RF

RD
RF
RD
RD
n2

RD
RD

3F
RD

i
RD
RC
RC
2B

RD

RD
RE
R2
RE

P O e I R PR T LR T S DL LTS AL R S SUECERRLRLE LR L G LR R B LR AR TR R B iy i

;RF addresses byte before first
1Load starti j index into D

sPut in RE.O0 (will do for j = 2

;to Il bytes)

sIncrement j. (= 2 on start)

;Get j index from RE.O

;Push for adding to base address
;Also put in RC.0, the i index

s Decrement RC,

;Add address in RF to the 1 index

: which is on the stack. Use

$ double precision, Sort is a

$ little faster if page boundaries
s won't be crossed in which case

3 double precision is not required.
;Get byte to be inserted

sPush. Routine "looks" for vroper
;location

;Search toward base address for insert
;location

;Get byte at RD

;Compare by subtracting from byte
jon staclk

+If >, then branch to insert

si;ove byte at RD up one locatlion

At this point the proper location for
the stacked byte has not been found
;Decrement the i1 index

;Test index in RC.O

;If # 0, branch. Else at end of list
;Skip next instruction. Byte goes 3
31(R(D) )

s Byte goes "ahead" of the one found to
sbe less

1Pop byte off stack

t1Insert in list

sGet j index from RE.O

;Push for comparing

:Get # bytes from RE.1 (IV)

;Compare by exclusive OR
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EZ 84 ;If #, branch to continue sorting
IIlC RP ;Reset RF address (optional)
RETHN tReturn from subroutine

1 koht bl e A TR AR G T R e BERR R S EERERETE 18 U B BT R T S R O L E F IR T (AT T T T 1S
s DEQUE: DOUBLE ENDED QUEUE ROUTINES

1 %Hl-1}-1!-1'!--}E-li-iH}4!—%-lé-ib-,'{—%‘.HE4’:i‘:ﬁ-i(--t'r-ﬁ-'IH:-‘.Hl-‘::-EP'::--IH:--t:-L’*?I--N--1‘%-‘.."{-4‘&-I:--15-H-'K-‘.‘?{%ﬂiiﬁébiiﬁﬁﬁﬁ****ﬁ‘vﬁ 73
3 The following five subroutines permit any page of memory to
serve as a double ended queue, a deque (pronounced "deck"),
which is like a stack except that bytes may be inserted or
removed from either end of the structure. R7 and R8 must be
initialized to the same page and same low address before
calling for the first time. RE.l passes values to and from
the deque and RF.1 signals if overflow or underflow resulted
from trying to insert a byte into a full deque or remove one
from an empty deque. Up to 255 entries may go into the deque
before overflow, FRCNT and REAR eventually become meaningless
in terms of memory addresses due to the wrap around of the

Hin address FRrRONL/ / / /REAR/ ilax address
— ENTRIES —

Using only the INSR and DELF subs will cause the storage area
to function as a simple queue or a first in first out %FIFO)
stack. DNote that the subs are not just simple compliments of
each other but carefully govern the action of the pointers,
Because of the action of OVRNDR, the subs INSR, DELF, IISF,
and DELR must be called as subroutines or underflow of +the

system stack may result.

H
H
4
H
3
H
i
i
i
i
H
H
i
H
i
4
4
H
4
i
i
H
PR b e L B e R R L R R RS e

] FdE R A e e e S S R AR S A A A A AR AR S AR R R SR SR S R R S R AR S R S A

3 OVRNDR: OVERFLOW / UNDERFLOW TEST
] A S e A R 2R A A R S R I S A SRR S S AR SR AR SR SRR R A R A S S 22 SRR A AL B IR
INPUT: ~=- R7 = Front pointer
RB8 = Rear pointer
QUTPUT: == RF.1 # 0 = no overflow / underflow
RF.1 = 0 = underflow (on deletes) overflow

(on inserts) )
Also, stack popped into R6, and RETH to main
executed on RF.1 = 0

- we e WS we = wa W W

3 CHANGES: ~= RF.1

1 F AR A A R AR A e AR R S T R AR R AR S A S R AR AR 1 SN T B R LA R AR S B e A g

OVRIIDR1 GLO R7 ;Get 7.0 front pointer low address

STR R2 ;Push onto stack for comparing

GLO RSB sCet RE.0 front pointer high address

XOR sCompare the two addresses

PHI RF ;Put result of comparison in RF.1
jas flag

BNZ 1F ;If #, then branch to RETN to
t1insert or delete

IRX 1If addresses were equal, then pop

LDXA 5 the main return address from the

PLO R6 ; stack into R6 thus cancelling

LDX 3 return to insert or delete caller

PHI  R6 ; and returning (with RF.1 = 0) to

smain routine

1H: RETN jReturn to insert / delete on
1R7.0 # R8.0
sReturn to main on R7.0 = R8,0

pointers at page ends. But the deque looks something like this.
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] R L L L L R T T R R OE DR TR T TR TR I R R TR TS TR

3 INSR: INSERT AT REAR
H At e AR R R A e I S AR IR A 2P IR D A 4 S S IR TR T 2 A 2 20 20 AF 20 4 2 0 2090 400 1*
s+ INPUT: == RE.1 = byte to insert

H

3 OUTPUT: == Byte inserted at rear of deque (@ M(R(8))
’ Abort on overflow =- deque full =-- RF.1 = 0
i

3 CALLS: == QOVRNDR

i

s+ CHANGES: == R8,0

3 btk L S R T R TR IR Rl E i 8y R HE it L 2T & R TR R Db b o b E R el BE b | S S IR S

ISR GLO RE8 ;Get low address rear pointer
ADI &1 sAdd 1 to move down to free location
PLO RS ;Put back in R8.0 (auto wrap around
;9 page end)
CALL OVRIDR $Test if R7.0 = RB.,0 & abort on overflow
GHI RE ;Get byte for entering at rear
STR RS ;Store @ HM(R(8))
RETIH jReturn. RF.1 # 0 = successful insertion

AR SR A S R S A I A S R S AR e L AR R S R 2 SR A R R A SR RS SR R AR A 2R 2
H

i DELF1 DELETE FROI1 FROIT

] b e b G e e e e e A R e S R e R R A e S S R R A P A AR I SR R AR A SR S AR R 2 A
3 INPUT: == Jlone

H
i OUTPUT: == RE.1 = byte at front of deque 3 (R(7))
3 Abort on underflow -- deque empty == RF.1 = 0
i
1 CALLS: == QVRIIDR
H
3 CHANGES: w= R7.0
H A b A S b b A e R A A e e e R SR S L S A AR 2 A T e bR AR R S e N SRR AR
DELF's CALL OVRIIDR ;Test if R7.0 = RG.0 & abort on
sunderflow
GLO R7 ;Get low address front pointer
ADT Bl ;Add 1 to move down to frontmost entry
PLO R7 ;Put back in R7.0 (auto wrap around
12 page end)
LDN  R7 1Load entry at front 2 H(R(7))
PHI RE sPut in RE.1 to pass back to caller
RETHN sReturn, RF.1 0 = successful deletion

: Frde e S 2 S R B A S R S A A S S e A S 0 SR T A S R R IR 2L R R B R 20 200

3 IISF1 INSERT AT FRONT
H AR B A R R I A R R AR A R A A S AR e S AR SR AR R S I A A e R S 2R SRR 4R R 00 St
; INPUT: == RE.1 = byte to insert

H

3 OUTPUT: -=- Byte inserted at front of deque (3 I(R(7))
1 Abort on overflow == deque full == RF,1 =0
H

i

CALLS: == OQOVRNDR

i
3 CHANGESt -= R7.0
R R R b R e e e L S S T

IKSF GHI RE ;Get byte to insert from RE.1
STR R7 ;Store at front of deque @ 1(R(7))



GLO
ST
PLO
CALL
RETN

R7
51
R?7
OVRNDR

A Mini Library 151

1Get low address front pointer

1Subtract 1 to move up to free location

sPut in R7.0

;Test if R7.0 = R8,0 & abort on overflow
sReturn. RF.1 ¥ 0 successful insertion

1 FEE 3 AR R SR S AP S R AR IR A A R AR AR 2 A R A AR R S R S A R A S SR B N SR 0 A 2 2 SRR R R R S

DELETE FROLI REAR
§ R S 2 AR A A S R S S R S R S S R

s+ DELR:
i INPUT:
OUTPUT:

CALLS

H
i
i
i
H
H
3 CHAINGES:
i

DELR1

CALL
DN
PHI
GLO
SHI
PLO
RETH

lione

RE.1 = byte at rear of deque (2 II(R(8))
Abort on underflow == deque empty == RF.1 = 0

OVRHNDR

RE,0

OVRINDR
R8
RE
RE
$1
R8

A2 242 A R A 20 T2 S A A 20 4 A SR 4 R e S 0 0T R SRR R 0 S R S dE S AR S

;Test if R7.0 = RB.0 & abort on underflow
;Load entry at rear @ I:(R(8))

tPut in RE.1 to pass back to caller

:Get low address rear pointer

;Subtract 1 to move up to rearmost entry

;Put in R8.0

sReturn. RF.1 # 0 = successful deletion
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Absolute value, 23, 26-28

Accumulator, 16, 21, 22, 28, 33

Adding, 7

Addition, 21

Address, 18, 19, 36-38, 43, 44, 46, 48,
54, 58, 66, 1156

Address pointer, 45

Algorithm, 19, 28

ALU, 21

AND, 30-32, 42

Answers to exercises, 140

Appendix, 142

Argument, 43, 77

Arithmetie, extended precision, 30

Arithmetic, operations, 16, 21

Arithmetic instruetion, 52

Arithmetic logic unit, 21

ASCII, 56, b8, 113, 114

ASCII keyboard, 56

Assembler, 37, 39, 46, 47, 49, 52, 56,
113, 114

Assembly, 40

Assembly language, 15, 18, 19, 20

Aztec, 10

Base, 1, 4-6, 11

BASIC, 16, 19, 36, 61, 71, 77

Binary, 3-8, 10, 11, 14, 17-19, 21, 22,
24-26, 28, 31, 32, 35, 56

Binary, negative, 8, 23

Binary arithmetie, 6

Binary digit, 17

Binary number system, 1, 2, 4, 15

Biquinary, 5

Bit, 10, 17, 22, 23, 26, 31-33, 56

Bit test by shifting, 34

Boolean algebra, 30

Borrow, 23, 29
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Bounce, key, 57
Branch
conditional, 36, 38, 40, 56
long, 37-39, 51
relative, 36
short, 37, 39, 40, 56
unconditional, 36, 38
Branch instruction, 35
Buffer, 44
Bus, 55-567, 77
Byte, 17, 19, 21, 26-30, 32, 34, 35, 37,
38, 41, 42, 44, 48, 53, 54, 56, 57

Carry, 22, 31
Carry bit, 22
Carry flag, 22
Central processing unit, 15
Chip-8, 71
Clock pulse, 38
Coefficient, 2
Compliment, 32
Co-routine, 66
Cosmac, 13, 69
CPU, 15

D register, 16, 21, 23, 25, 32, 33, 35,
42, 60

Data, 18, 19, 46, 55-58

Data, parallel. See Parallel data

Data, serial. See Serial data

Data bus, 56, 58, 60

Debugging, 86, 39, 45, 51, 116

Decimal, 14

Decimal, convert to hex, 13

Decimal number system, 1

Definition, 73

Deque, 67
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DF register, 22-26, 28, 29, 32-34,
42, 50, 60

Direct memory access, 58, 60

Discussion, 73

Dividing, 35

DMA, 58, 60

Double precision, 27, 28, 29

Double precision, addition, 28

Double precision, subtraction, 29

Double precision shift, 35

EF1, 556

ET'2, 55

EF3, 55

EF4, 556

Elf, 59

Exclusive OR, 30, 31
Exponent, 3
Exponent, negative, 5

Flag, 42, 69

Flag, interrupt enable, 58, 59
Flag line, 55, 56, 58, 77
Floating point, 6, 30
Fraction, 5, 6

Game, 61

Hermaphroditic computer, 58

Hex, 13, 14, 18, 32, 41, 113, 115

Hex, convert to decimal,, 13

Hex digit, 46, 51, 52

Hex dump, 116

Hex number, 13

Hexadecimal, 3, 10, 14

Hexadecimal address, 37
Hexadecimal number system, 5, 9, 11

Index register, 16
Input, 65-57, 61
Input, operations, 16
Instruction set, 156
Integer, 6
Integer BASIC, 28

See also BASIC
Interpreter, 70, 71
Interrupt, 51, 55, 58
Interrupt enable flag, 58, 59
Interrupt request, 59
Interrupt routine, 58-60

Jump instruetion, 35

Keyboard, 57, 58

Language, assembly. See
Assembly language

Language, machine. See
Machine language

Lincoln, Abraham, 10

Linked list, 44

Load instruction, 42-44

Logic, operation, 16, 21, 30-33

Loop, 41, 53, 67-69

Loop control, 40

Loop counter, 46, 53, 70

LSB, 17, 28, 33, 34, 41, 42, 77

LSD, 17

Machine cycle, 38, 39

Machine language, 15, 16, 18, 23, 29,
36, 38, 61, 70, 71, 113

Masking, 31, 32, 42

Maya, 10

Memory, 18, 19, 36, 42-44, 47, 52,
53, b5, 60

Memory, operations, 16, 42

Memory byte, 43

Memory page, 37, 53

Memory pointer, 43

Microprocessor, 16, 18, 21, 22, 30,
356, 45

Mieroprocessor, 1802, 17, 20, 24

Minuend, 23, 24

Minus sign, 27

Miscellaneous operations, 16, 50

Mnemonie, 16, 18, 39, 43, 73, 113,
115-117

MSB, 17, 26, 28, 33, 34, 77

MSD, 17

Multiplying, 35

NO, 65

N1, 55

N2, 55

Negative, 26

Negative number, 27, 32
Nesting, 65, 68, 69

No operation, 51

NOP, 51



Octal, 3, 14

Okosa, 5

0ld English, 16

Op code, 18, 37-39, 43, 47, b7, 73

Operand, 21

Optimization, 39

OR, 30-32, 34

Output, 55-57, 61

QOutput, operations, 16

Overflow, 22, 23, 25, 28-31, 33, 35,
50, 53, 67

Overflow bit, 22

Overflow flag, 26

P register, 51, 55, 60

Packed, 32

Packing by shifting, 34

Page boundary, 37, 38

Page relocatable, 37

Parallel data, 56

Pascal, 16

PC-program counter. See
Program counter

Port, 56

Positional number system, 17

Power, 3, 4, 6, 11, 33

Printer, 58

Program counter, 17, 18, 37, 38, 43,
51, 52, 60, 65, 113

Program flow, 18, 35, 40

Program flow, operations, 16

Programming example, 73

PROM, 19

Q flip flop, b5, 57-59
Q register, 51
Queue, 67

Radix, 4

RAM, 19, 45

Random access memory, 19

RCA Cosmac VIP, 13, 59

Read only memory, 19

Read usually memory, 19

Register, 16, 18, 19, 21, 37, 43, 44,
45, 47, b0, b1, 53-bb, 70, 77, 113

Register, D. See D register

Register, DF. See DF register

Register, index. See Index register

Register, internal, 45

Register, operation, 45

Register, P. See P register

Index
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Register, Q. See Q register, Q
flip flop
Register, seratch pad. See Seratch
pad register
Register, T. See T register
Register, X. See X register
Registers, operations, 16
Relocatable code, 40
ROM, 19
RUM, 19

Serateh pad register, 16, 21, 42, 43,
46, 49, b1, b2, b4
Self-modifying code, 44, b4

Serial data, 56

Shift left, 34

Shift left with carry, 34

Shift right, 33, 36

Shift right with carry, 33

Shifting, 32-35, 42

Shifting, arithmetic, 35

Sign, 26, 28

Sign, minus, 27

Sign bit, 26, 27, 30

Simulator, 45

Skip, 37

Skip, conditional long, 40

Skip, long, 37, 39

Skip instruction, 36, 39

Sorted list, 44

Stack, 17, 44, 52, 66, 67, 113

Stack pointer, 66

Status bit, 42

Store instruction, 42-44

Strobe line, 56, 57

Subroutine, 36, 39, 46-48, 53, 64-66,
71,114

Subroutine library, 35, 142

Subtraction, 8, 22, 23

Subtraction, by adding, 24

Subtraction, rules for, 26

Subtrahend, 23, 24

Symbolic action, 73, 75

Syntax, 756

T register, b1, bb

Timer, 49

Timing, 60

Toggle, 22

Tree structure, 44

Truth table, 30, 31

2s complement, 23-27, 29, 32
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