IN DEPTH
PARALLEL PROCESSING

T800

and Counting

The T800 transputer and the Occam language
are a hardware/software team designed to work together

ankind con-
M stantly seeks
ways to solve
. the technologi-
cal challenges found by ob-
serving the natural universe.
Today, ‘our understanding of
nature is increasingly depen-
dent on computer-based simu-
lation of theories, supposi- -
tions, and curiosity.
- Such complex operations as
- verifying the fluid flow of air
-around the wing section of an
airplane to determine drag
and stability, studying chemi-
cal reactions in the prepara- “
tion of a new drug, and study-
ing weather patterns require
the increases in performance
provided by parallel-process-
ing computers. In fact, many
problems are beginning to re-
quire that increase in speed to
quench our growing thirst for
immediate responses. As par-
allel-processing computers
become more and more avaxlable, these
workhorses of science and industry are
emerging as a key to continued techno-

logical growth.

Multiprocessors vs. Multicomputers
Parallel-pmoessmg computers can be di-
vided into two basic architectures: the
shared-; multiprocessor (see fig-
ure 1a) and the multicomputer (see fig-

ILLUSTRATION: ROBERT PASTERNAK © 1988

Richard M. Stein

ure 1b). The shared-memory multipro-
cessor comprises a collection of CPUs
connected by a bus to a common pool of
memory.

A multiprocessor performs parallel
computations in several ways. One is to
dedicate a complete processor to each ac-
tive process; this is called control paral-
lelism. Each process is free to operate on
memory without appreciable interfer-

ence from the others. Why
not add more processors and
keep partitioning the prob-
lem, one process to each pro-
cessor, to gain more speed? A
problem arises as you add
CPUs to the bus: When one
CPU tries to access an ad-
dress in memory, it must first
get permission from the
others. Arbitration among the
CPUs leads to contention.
Each CPU requires a finite
-amount of time to fetch some-
thing from memory, and
while this is going on, the
other CPUs must wait if they
need data as well. Adding
more CPUs simply makes the
problem worse, and a bottle-
neck results.

This is the so-called von
Neumann bottleneck. It’s the
reason multiprocessors sel-
dom have more than four
CPUs simultaneously operat-
ing on a common pool of
memory. The bus bandwidth is saturated
by simultaneous requests from the
CPUs. The shared resource leads to a
form of inflation, where the cost of per-
forming an operation becomes increas-
ingly expensive and therefore less effi-
cient. This is the key limitation to
multiprocessor architectures: Finite bus
bandwidth means that only a fixed num-
continued

NOVEMBER 1988 * BYTE 287

IN DEPTH
T800 AND COUNTING

ber of instructions can be carried out
each second. While this may be appre-
ciable—more than 500 million floating-
point operations per second (MFLOPS)
is possible—the growth rate in the band-
width is limited by technology.

The multicomputer differs from the
multiprocessor in several ways. Proces-
sors are not connected to a common bus.
Instead, each processor has a small
(64K-byte to 4-megabyte) RAM con-
nected to a local bus—the processor and
RAM are called a node—and communi-
cation between processors occurs
through high-speed serial links. There is
no bottleneck. Since a node doesn’t share
a common bus with any other node and
communication occurs through serial
links, the multicomputer’s bandwidth
rises linearly with the number of nodes.

The multicomputer has other advan-
tages as well. The most notable is cost.
Multicomputers require less glue logic
and fewer support chips on a per-node
basis than do multiprocessors. A multi-

computer typically runs between one-
tenth and one-hundredth the cost of a
comparable multiprocessor. :

The Transputer

About 4 years ago, INMOS introduced
the transputer, a multicomputer building
block. It has a great cost-performance
ratio: A T800 transputer with 4 mega-
bytes of RAM costs about $1000, and a
30-MHz T800 delivers 2.25 IEEE 32-bit
MFLOPS and 15 million instructions per
second, well under $100 per MIPS. In
addition, the transputer requires little
support circuitry: You can build a fully
functional multicomputer node (a trans-
puter, a 5-MHz crystal, a few pull-up re-
sistors and diodes, four F373 parts [octal
latches], some RAM, and a wire-wrap
tool) in a few hours. The most costly part
of the hardware is the RAM.

Figure 2 shows the internal structure
of the T800 transputer. This architecture
is unique when compared with conven-
tional CPUs. The T800 incorporates 4K

’ Figure 1a:

% typical shared-memory multiprocessor (without memory
cache). The bus is a common resource among all CPUs; as more CPUs are added,

" -bus contention can lead to the von Neumann bottleneck.

- Figure 1b: A rypical multicomputer system. Each node consists of a CPU and

memory. Processes communicate with each other through bidirectional serial links

(dotted lines). :

bytes of on-chip static RAM. A program
that fits into this on-chip reservoir will
execute instructions in the transputer’s
cycle time—that is, in the 33-nanosecond
cycle for the 30-MHz version. The inter-
nal RAM is not cache memory per se, as
many conventional reduced-instruction-
set-computer processors have, but it does
serve an important role as stack space.

The internal RAM is used by com-
pilers to hold the base addresses of arrays
and local procedure variables. The base
address of an array is used far more often
than a single array-element address dur-
type of an array element are fixed at
compile time, so a simple calculation can
determine the address of any array ele-
ment. The internal RAM serves as a reg-
ister stack, an area where variables used
repeatedly are held to speed access and
program execution. A register variable is
accessed in a single cycle, but variables
held in external RAM require a handful -
of cycles to latch and read.

Using the ’s internal RAM
in this way does have one side effect, and
it shows up in the language specification
for Occam, the transputer’s native lan-
guage. By definition, the Occam lan-
guage is not recursive. If it were, the re-
peated stacking of the local variables

would generate confusion at each level of

recursion during program execution. .

the transputer is a bit tricky in Occam,
since the i

The T800 integer-register set is sparse
but highly functional (see figure 3). The
three accumulators are arranged as a
stack and serve as expression evaluators.
The workspace pointer tracks the ad-
dress of the data that the active process is
using. The instruction pointer is similar
to the program counter found in conven-
tional CPUs and points to the current
instruction. 2

The transputer’s operand register
serves as the focal point for instruction
processing. All transputer instructions
are 1 byte long and typically execute in
one to two cycles. The transputer forms
an operand by loading the instruction
data field into the 4 least significant bits
of the operand register. The instruction
uses the contents of the entire operand
register as its operand,; it clears the oper-
and register to 0 on completion.

The transputer also performs instruc-
tion h. Since each instruction is 1
byte,fomwillﬁtintoonewordonthf-’ 4

application must maintain the
. stack and you must explicitly manage

nebaiRa i

U#h)l

o |
m
w

dlliaill1]
)

. served area for linkage information,

_ process priorities: high and low. It gives

:‘nnﬁnmmm
ware timer, mhmbeundwm

forms to IEEE standard 754-1985. At 30

IN DEPTH
T800 AND COUNTING

T800. Each instruction fetch retrieves
four instructions simultaneously; this re-
quires less frequent accesses to

The transputer maintains a double-buf-
fered instruction queue. The prefetch-
and-buffering scheme delivers most of
the performance benefits of an instruc-
tion cache, but without the silicon’s cost.
The prefetch-and-buffering sequence al-
most completely decouples instruction
execution time from memory speed.

The transputer is designed to execute
concurrent processes under direct hard-
ware control. A by-product of hardware
process scheduling is realized in the ex-
traordinarily short context switches. Due
to a hardware stack maintained by trans-
puter microcode, most context switches
require only between 1 and 2.5 micro-
seconds (us). A transputer process con-
sists of a local workspace and a small re-

whnchholdsthepomtersusedtommn

‘tain multitasking and I/O protocols. -
Thclmdwaxe‘schedulersupportstwo

the high-priority process unconditional
control over the CPU and prevents the

low-priority processes from executing

until the high-priority one relinquishes 3 3 S
the CPU. You use a high-priority process Figure 2: The INMOS T800 transputer. The CPU and FPU can execute in parallel
for very short—Iless than one time slice— by organizing Ocamntoexploubodupmcwomsimuhmeously Ihdnip:sdmgnad

sequences of instructions that are not to wnacrnwy
be interrupted by external events or f” OO i Zideioa

synchronous interrupts for time-critical
processes. The timer derives its signals
from the externally connected 5-MHz
crystal. The crystal supplies the trans-

thrmghachannelass:gnm and it has
either 1-ps or 64-us resolution. With
[processes tightly to execute at precise
intervals :

“The T800's floating-point unit con-

MHz, it is 50 percent faster than a 16-
MHz 80386/80387 combination. The
T800 performs 32-bit floating-point -

‘multipli wﬁmnﬂ@w¥mnm'mum&rmuummanWMnmummmwmnnmmnaamwc
mhssthag}gs,mdnxcqmresﬁ}stmr arranged as a stack for expression evaluation. Zero-address instructions operate on
1 us for division. The transputer’s FPU . wluesmdwstack.nngk-addrminsmwﬂomlmdmhmfmnmryinmthe ‘
can run in parallel with the integer CPU, g50k andsoon. bt

NOVEMBER 1988 « BYTE 289

R R R A S M O AR RS

IN DEPTH
T800 AND 'COUNTING

programmatically separating integer and
floating-point computations. In Occam,
you can write this as

_ PAR
SEQ
- . .do floating-point calculations
SEQ
. . .do integer calculations

This fragment directs the transputer to
execute two sequential processes in par-
allel, or concurrently: One process exe-
cutes only floating-point instructions,
while the other performs the integer
arithmetic.

The most distinguishing feature of the
transputer is its four link interfaces. They
are direct-memory-access-controlled,
bidirectional, serial-transmission links
and can operate at up to 30 megabits per
second. Therefore, each transputer is
capable of 120-megabit-per-second link
I/O, the equivalent throughput of 12
Ethernets. The links serve as the inter-
face to other transputers. You can easily
connect them into a variety of topologies,
such as hypercubes, rings, and grids.
They are the primary reason that the
transputer is so linear.

The transputer is linear in the sense
that if you execute a program on a single
transputer, gather some performance
data, and then partition the software to
run on two transputers, the performance
will have nearly doubled. In ray-tracing
studies, the transputer’s improvement
factor is typically 98 percent to 99 per-
cent linear (multiprocéssors are typically
70 percent to 80 percent linear).

as a channel. An Occam channel is a
one-way point-to-point pathway resident

in memory; it is termed a soft channel.
Channel input and output are special for
two reasons: Communicating processes
are synchronized by channel communi-
cation (see figure 4), and the transputer
links are me: -mapped so you can
“place” channels at link addresses. This
placement transforms the soft channel
into a hard channel, and data is trans-
ferred through a link to a process at-
tached to the link on another transputer.

Link input and output share a common
clock signal (not a prerequisite for suc-
cessful communication), and the data
transmissions are self-synchronizing. In-
puts and outputs can occur simulta-
neously over the same link, provided that
two separate processes are available to
both send and receive data.

Link I/0O, or, more generally, channel
communication, is a pivotal feature of
the Occam language. Occam provides
the framework for constructing parallel

_processes (processes with concurrent

execution contexts). Parallel processes
that communicate must do so through
Occam channels, not via shared vari-
ables. Why does Occam have this restric-

tion? Because of deadlock, which occurs -

when two processes fail to communicate
correctly as a result of improper coding
or design.

Listing 1 illustrates deadlock. The two
SEQ processes execute simultaneously;

_the first requests input on chan2, while

the second requests input on chani. Both
processes are waiting for input that will
never occur, since no output executes in
either SEQ until the inputs are satisfied.
The program never reaches the

output
 statements in the SEQs and thus doesn’t
~ complete. If you reversed the order of one

input and output, the program would
complete, because each input request
would be satisfied by a compleme:
output. ;

Attempting to share a variable among
parallel processes gives rise to a similar
conflict: One process may try to write
the variable at the same time another one
is trying to read it. Since parallel pro-
cesses run asynchronously (at their own
rate), reading a variable that has been
modified by another process means the
value would be uncertain. Since you-
can’t know when the variable will be
modified, you could be trying to read it
when another process is writing it. To
prevent this collision, Occam precludes
parallel processes from sharing vari-
ables. But Occam variables can and do
store data, and channels are available for
interprocess communication.

The point-to-point nature of the
Occam channel discourages the design of
a program dependent on routing data
through intermediate nodes. While
“through-routing” is typically imple-
mented on the transputer as a separate
software process that enqueues and de-
queues packets, the hardware provides an
easier approach. (Second-generation
transputers are likely to'have this fea-
ture.) You can’t always achieve a logi-
cally concurrent description that isolates
communication dependency to a nearest
neighbor, Through-routing circumvents
this design limitation, and it’s much
faster in hardware than in software.

Several manufacturers have developed
transputer plug-in boards for both the
IBM PC and the Macintosh. CSA,
MicroWay, and Definicon Systems all
build plug-in PC boards with varying
amounts of RAM, transputers, crossbar
switches, and price. Nth Graphics manu-
factures a'transputer-based PC plug-in
graphics engine running the Hoops
graphics package from Ithaca Software.
A typical single transputer board with a

20-MHz T800 and 2 megabytes of exter-

i,#‘ﬂ‘z vy . W .3 :';_‘;:_5' “Time units 3O R A

e 8 Time

@ units

e i o SRS Aicn sy T oo s

Processes synchronize only when they communicate via Occam channels.

Figure 4: Wl\lenpmcessInumwaitﬂ:ronetimeunitbeforepmcessZtsmadytoacceptiwdata, it is said to be “blocked.”

295 BYTE * NOVEMBER 1988

e

e

AR _cmﬁ\g_.\‘

IN.DEPTH
T800 AND COUNTING

nal dynamic RAM costs about $3000,

including an Occam compiler, documen-
tation, and some utilities. Levco makes a
plug-in transputer board for the Mac.
Occam is a secure language with a ro-
bust and efficient compiler, but it does
have some shortcomings. For one, Oc-
cam fails to provide hierarchical data-
structure typing, an essential for object-
oriented programming. You need to have
a means of abstracting the problem do-
main into more than just assignments, in-
puts, and outputs. The success of a com-
puter model is often characterized by the
correctness of the problem-domain ab-
straction; this is far more easily achieved
in languages like Ada, C, and C++.
Occam doesn’t support the struct syn-
tax of C, enumeration, or dynamic mem-
ory allocation. It also doesn’t support a
recursive syntax, so the application pro-
gram must stack and unstack recursive
data structures like binary trees and

output first. The program hangs.

PAR

chap2 1

CHAN OF INT chanl,‘chanZ :~=- channel declarations

INT A : -- local variable scope is
3 -- the first SEQ
SEQ :
chan2 ? ~=input into A on chan2
chanl ! 6 -=- output 6 on chanl
INT B : . ‘== local variable scope is
== the second SEQ (not shared)
SEQ : ¥ ; ; i
chanl 2.B WL Eresinpat onichanl dnto B ddn i
1

D : : -- putput .a 9

C, FORTRAN, and Pascal compilers
are available for the transputer. An Ada
language compiler from Alsys is planned
for August 1989, and rumor has it that
Glockenspiel, Ltd., in Dublin, Ireland,
is working on a C++ compiler based on
the 3L Parallel C compiler. Software
tools for the transputer are becoming
more widespread.

Logical Concurrency

Logical concurrency is a natural part of
any problem domain composed of multi-
ple degrees of freedom. Any system you
can view as a collection of processes is
said to possess logical concurrency. A
formal definition states that the amount
of logical concurrency is equal to the
number of simultaneous processes or
composite coincidental actions occur-
ring in a closed system modeled by a
computer program or simulation.

. 'This definition applies to multicom-
puters. In multicomputer systems, you

m
Listing 1: This code illustrates deadlock. Two SEQ processes execute
simultaneously. Both request input and wait for it, while neither performs any

on chan2

»

@ : M)

©

Figure 5: Treating the molecules in a gas as individual and unique leads 1o a fine-
grained logically concurrent description (8), while grouping the gas into small but
Jfinite volumes leads to successively coarser descriptions (b) and (c).

292 BYTE » NOVEMBER 1988

gain speed by partitioning the processes
among different processors that perform
work concurrently. Multicomputers
excel in applications where the problem
domain possesses data parallelism. You
can process a large quantity of data when
many nodes simultaneously operate on
small, independent parts of the database.

It’s customary to classify logical con-
currency in terms of granularity, For in-
stance, say a balloon filled with a gas
contains 10** molecules. If you attempt
to model the equations of motion for each
molecule—no small undertaking—you
would need a fine-grained logically con-
current description of the problem (see
figure 5). However, if you treat the bal-
loon as a composite of 1024 volume ele-
ments (and compute an average value for
some observable quantity, such as the
temperature or pressure in each ele-
ment), you would consider a medium-
grained logically concurrent model.

- Even fewer volume elements would lead

to a coarse-grained logically concurrent

Identifying the composite processes of
a system is the first, but not the only, step
when deriving multicomputer software
architectures (see figure 6). Not only
must we know what the composite pro-
cesses are, but more important, we must
know how they interact. Determining the
interfaces between the processes is the
next most important step.

The interfaces between the processes
define the precise format for information
exchange. Process A needs input from
process B, which might consist of a

- .stream of real numbers, an interrupt, or
_a binary-encoded number. The inter-

faces between processes resemble some-
what the argument specifications for a

- subroutine, function, or procedure.

.. The inputs and outputs mark the

and exit points for intermediate results
generated by a simulation. They are
point-to-point communication ‘paths be-
tween processes. If the inputs and out-
puts are defined, the processes are iso-
lated from each other, and the logically
concurrent description of the system is
complete. A concise interface definition
between communicating processes is es-
sential to executing the transformation

from logical to physical concurrency.
The process of designing a multicom-
puter system begins with the idea to be
studied, the environment to be simu-
lated, or the problem to be analyzed, not
with the selection of a hardware host.
This somewhat radical idea—organizing
the software through a logically concur-
rent description without considering a
: continued

AR o s AR e TS

IN DEPTH
T800 AND COUNTING

R SR
SRS W PR

hardware target for development—is
unique to multicomputer software sys-
tems.

The end of the design process leads to
the construction of a special-purpose
computer explicitly organized to execute
the software. “Special-purpose” means
that the logically concurrent software de-
scription, including inputs, outputs, and
processes, can now be ported to the phys-
ical concurrency of the multicomputer
without affecting the software’s design
or the schedule.

Logical concurrency is used to ab-
stract problem domains into software

\

multicomputer solutions in conjunction
with the transputer and Occam: a hard-
ware-and-software team created to fa-
cilitate the logical-to-physical trans-
formation.

Transformation Revealed

The transformation from logical concur-
rency to physical concurrency is the crux
of multicomputer development. The
speed increase in the algorithms and
software is a direct result of this transfor-
mation. The entire process of designing
transputer-based multicomputer soft-
ware begins with this assumption: Once

Figure 6: A process- structuregraph Identifying the composite processes in a
multicomputer system is important, butsowwolatmg the interfaces between
processes.

PLACE chan0.out AT 1inkO.out :

PLACE chanO.in AT linkO.in :

PAR -
PROCESSOR 0 T8 -
navier.stokes () -
PROCESSOR 1 T8 -

graphics.output () =-

.
s

294 BYTE » NOVEMBER 1988

Listing 2: A template program. This can serve as input to the configurer.

-~ put chan0.out at hard link0O.out

-~ put chanl.in at hard link0.in

do these processes simultaneously
processor 1 is a T800

solve the Navier-Stokes equations
processor 2 is also a T800

dump the output (in real %1me)

_input links and four for output

.processes to the

you have a logically concurrent descrip-
tion, you can evaluate the software’s be-
havior on a single transputer using soft
channels to transfer data between coop-
erating processes.

This single-transputer implementation
is necessary for two reasons: It is un-
likely that a “shotgunned” multicom-
puter software-development cycle (where
you “hack” the software out and dis-
tribute it among all the nodes) will be
successful, and debugging a single-
transputer implementation, or any
uniprocessor implementation, is easier
than debugging software on several pro-
Ccessors at once.

The path to physical concurrency
starts with observing the logical behavior
of the simulation running on a single
transputer. The CHAN declarations are the
key to performing the mapping. The log-
ical software model, composed of sev-
eral communicating processes, uses the
channels to pass messages. Occam places
these channels into the single trans-
puter’s address space.

The ‘desire, however, is to achieve
physical concurrency, which is ‘accom-
plished when the logical software model
is distributed among the processors ac-
cording to the software design. With the
Occam PLACE construct, you can map the
channel addresses to the link addresses.
The PLACE construct instructs the com-
piler to set the address of the predicate at
a specific ‘address. For example, the
statements A ,

INTabcd
,PLAGE abcﬂ at M 3 /
cause the vlrmbleu abed \to be

mgﬂ

plwedataddmssﬂhexademmal)

“Likewise, the PLACE construct applies
to channels ‘The transputer’s address
space has eight specific addresses for the
links, ‘and once you PLACE a channel
there, it’s called a hard channel, instead
of a soft channel for -to-memory

channel I/0. This hard channel then
“writes or reads information from another

process resident on-another transputer.
There are eight link addresses, four for
links,
1ink.in0, link.out0, 1ink-

.ini1, link.outl,andsoon.
To complete the logical-to-physical
transformation, you must aiso direct the
appropriate transputer.
This task is handled by the INMOS con-
figurer, a postcompilation operation that
determines a boot path, along which all
the processes will flow toward their tar-
get destinations. An example of a tem-
continued

P T S S e LR et Y AT ey B el = e e i X
b SR e S SR S B SRR e A W ey

Circle 185 on Reader Service Card

Peopie are talking about us.
“This isaverygood lmplementanon ofPORTRAN better than the one I use on my
minicomputer system.” JEEE Software

“Lahey F77L is definitely for the programmer’s market, with features for the casual
and professional user...EDITOR'S CHOICE” PC Magazine

“It is a fantastic product” PC Australia

“It should be the last FORTRAN compiler you will need to buy...” Your Computer
“l.ahey F77L was by far the easiest compiler to use...” Programmer’s Journal

“Compilation speed is Lahey FORTRAN's most remarkable feature; it is unbelievably
fast...Realistically, Lahey FORTRAN is the most efficient and productive FORTRAN
development tool for the DOS environment...” Byte

e Co®

<

When people talk about FORTRAN

Lahey

- Contact us to discuss our products and your needs. (800) 548-4778
Lahey Com %stems Inc. P.O."Box 6091, Incline Village, NV 89450
Tel: (702) 831-2500 FAX: (702) 831 -8123 Tix: 9102401256

the name mentioned most often is

POWER TOOL.

Introducing 4x488

-

296 BYTE * NOVEMBER 1988 Circle 63 on Reader Service Card

A S i s e Ry = ES R e

IN DEPTH
T800 AND COUNTING

plate program that can serve as input to
the configurer is shown in listing 2.

The configurer generates a complete
unage with the boot path and bootstrap
instructions for each node in the multi-
computer. The loader PLACEs the pro-
cesses called navier.stokes() on PRO-
CESSOR 0. The graphics.output()
process is PLACEd on PROCESSOR 1. The
loader downloads the processes and then
begins execution. Communication is syn-
chronized, for the two processes in list-
ing 2 don’t know or care whether they
read or write from hard channels or soft
channels.

Software-Driven ;
Ideally, a software design should be
completely independent of the hardware.

! The multicomputer system is driven by

software, not hardware requirements.
However, its success depends on the exis-
tence of a suitable hardware host. The
INMOS transputer is designed to serve
as a multicomputer node.

The innovators and pioneers who elect
to invest and pursue multicomputer sys-
tems will find an increasing marketplace
for this technology. The skills you need
to design multicomputer software sys-
tems are not radically different from
those used in sequential software design.
Understanding the Occam language,
transputer architecture, and, most of all,

Iogmleoncunencymthemajorm-

~quirements. Mostly, however, designing
mulncomputcr

software systems depends
on cxeatmty mwlhgence and desire. @

“BIBLIOGRAPHY
Athas, William C., and Charles L. Seitz.
| **Multicomputers: Message-Passing

Concurrent Computers.” IEEE Com-
putervol2lno8Augustl988pp
9-24.

Heath, M. T., ed. Hypercube Multiproces-

Phlhdelphn. SIAM, 1987.

“IMS T800 Architecture.” Technical Note
6, INMOS Lid., 1987.

Mackintosh, Allnn. “Dr. Atanasoff’s
Computer.” Scientific American, Au-
gust 1988, pp. 90-96.

Packer, Jamie. “Exploiting Concurrency:
A Ray Tracing Example.” Technical
Note 7, INMOS Lud., October 1987.

.| Pountain, Dick, and David May. “A Tuto-

rial Introduction to Occam Program-
ming.” London: Blackwell Scientific
Publications, Ltd., 1987.

Richard M. Stein is a software engineer
and writer from Irvine, California. He
has worked with INMOS transputers for
more than 3 years. He can be reached on
BIX as “rstein.”

