
The Game of Life 

 

The Game of Life, also known simply as Life, is a cellular automaton devised by the 
British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its 
evolution is determined by its initial state, requiring no further input. One interacts with the Game of 
Life by creating an initial configuration and observing how it evolves. It is Turing complete and can 
simulate a universal constructor or any other Turing machine. 
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Rules 
The universe of the Game of Life is an infinite, two-dimensional orthogonal grid of square cells, each 
of which is in one of two possible states, live or dead, (or populated and unpopulated, respectively). 
Every cell interacts with its eight neighbours, which are the cells that are horizontally, vertically, or 
diagonally adjacent. At each step in time, the following transitions occur: 

1. Any live cell with fewer than two live neighbours dies, as if by underpopulation. 

2. Any live cell with two or three live neighbours lives on to the next generation. 

3. Any live cell with more than three live neighbours dies, as if by overpopulation. 

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. 

These rules, which compare the behavior of the automaton to real life, can be condensed into the 
following: 

1. Any live cell with two or three live neighbours survives. 

2. Any dead cell with three live neighbours becomes a live cell. 

3. All other live cells die in the next generation. Similarly, all other dead cells stay dead. 

The initial pattern constitutes the seed of the system. The first generation is created by applying the 
above rules simultaneously to every cell in the seed; births and deaths occur simultaneously, and 
the discrete moment at which this happens is sometimes called a tick. Each generation is a pure 
function of the preceding one. The rules continue to be applied repeatedly to create further 
generations. 
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Origins 
In late 1940, John von Neumann defined life as a creation (as a being or organism) which can 
reproduce itself and simulate a Turing machine. Von Neumann was thinking about an engineering 
solution which would use electromagnetic components floating randomly in liquid or gas. This turned 
out not to be realistic with the technology available at the time. Stanislaw Ulam invented cellular 
automata, which were intended to simulate von Neumann's theoretical electromagnetic 
constructions. Ulam discussed using computers to simulate his cellular automata in a two-
dimensional lattice in several papers. In parallel, von Neumann attempted to construct Ulam's 
cellular automaton. Although successful, he was busy with other projects and left some details 
unfinished. His construction was complicated because it tried to simulate his own engineering 
design. Over time, simpler life constructions were provided by other researchers, and published in 
papers and books. 

Motivated by questions in mathematical logic and in part by work on simulation games by Ulam, 
among others, John Conway began doing experiments in 1968 with a variety of different two-
dimensional cellular automaton rules. Conway's initial goal was to define an interesting and 
unpredictable cell automaton. For example, he wanted some configurations to last for a long time 
before dying and other configurations to go on forever without allowing cycles. It was a significant 
challenge and an open problem for years before experts on cellular automata managed to prove 
that, indeed, the Game of Life admitted of a configuration which was alive in the sense of satisfying 
Von Neumann's two general requirements. While the definitions before the Game of Life were proof-
oriented, Conway's construction aimed at simplicity without a priori providing proof the automaton 
was alive. 

Conway chose his rules carefully, after considerable experimentation, to meet these criteria: 

1. There should be no explosive growth. 

2. There should exist small initial patterns with chaotic, unpredictable outcomes. 

3. There should be potential for von Neumann universal constructors. 

4. The rules should be as simple as possible, whilst adhering to the above constraints.  

The game made its first public appearance in the October 1970 issue of Scientific American, 
in Martin Gardner's "Mathematical Games" column. Theoretically, the Game of Life has the power of 
a universal Turing machine: anything that can be computed algorithmically can be computed within 
the Game of Life. Gardner wrote, "Because of Life's analogies with the rise, fall and alterations of a 
society of living organisms, it belongs to a growing class of what are called 'simulation games' 
(games that resemble real-life processes)."  

Since its publication, the Game of Life has attracted much interest because of the surprising ways in 
which the patterns can evolve. It provides an example of emergence and self-organization. Scholars 
in various fields, such as computer science,  physics, biology, biochemistry, economics, 
mathematics, philosophy, and generative sciences, have made use of the way that complex patterns 
can emerge from the implementation of the game's simple rules. The game can also serve as a 
didactic analogy, used to convey the somewhat counter-intuitive notion that design and organization 
can spontaneously emerge in the absence of a designer. For example, philosopher Daniel 
Dennett has used the analogy of the Game of Life "universe" extensively to illustrate the possible 
evolution of complex philosophical constructs, such as consciousness and free will, from the 
relatively simple set of deterministic physical laws which might govern our universe. 
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The popularity of the Game of Life was helped by its coming into being at the same time as 
increasingly inexpensive computer access. The game could be run for hours on these machines, 
which would otherwise have remained unused at night. In this respect, it foreshadowed the later 
popularity of computer-generated fractals. For many, the Game of Life was simply a programming 
challenge: a fun way to use otherwise wasted CPU cycles. For some, however, the Game of Life 
had more philosophical connotations. It developed a cult following through the 1970s and beyond; 
current developments have gone so far as to create theoretic emulations of computer systems within 
the confines of a Game of Life board. 

  

Examples of patterns 
Many different types of patterns occur in the Game of Life, which are classified according to their 
behaviour. Common pattern types include: still lifes, which do not change from one generation to the 
next; oscillators, which return to their initial state after a finite number of generations; 
and spaceships, which translate themselves across the grid. 

The earliest interesting patterns in the Game of Life were discovered without the use of computers. 
The simplest still lifes and oscillators were discovered while tracking the fates of various small 
starting configurations using graph paper, blackboards, and physical game boards, such as those 
used in Go. During this early research, Conway discovered that the R-pentomino failed to stabilize in 
a small number of generations. In fact, it takes 1103 generations to stabilize, by which time it has a 
population of 116 and has generated six escaping gliders; these were the first spaceships ever 
discovered.  

Frequently occurring examples (in that they emerge frequently from a random starting configuration 
of cells) of the three aforementioned pattern types are shown below, with live cells shown in black 
and dead cells in white. Period refers to the number of ticks a pattern must iterate through before 
returning to its initial configuration. 
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The pulsar is the most common period-3 oscillator. The great majority of naturally occurring 
oscillators have a period of 2, like the blinker and the toad, but oscillators of many periods are known 
to exist, and oscillators of periods 4, 8, 14, 15, 30, and a few others have been seen to arise from 
random initial conditions. Patterns which evolve for long periods before stabilizing are 
called Methuselahs, the first-discovered of which was the R-pentomino. Diehard is a pattern that 
eventually disappears, rather than stabilizing, after 130 generations, which is conjectured to be 
maximal for patterns with seven or fewer cells. Acorn takes 5206 generations to generate 633 cells, 
including 13 escaped gliders. 
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Conway originally conjectured that no pattern can grow indefinitely—i.e. that for any initial 
configuration with a finite number of living cells, the population cannot grow beyond some finite 
upper limit. In the game's original appearance in "Mathematical Games", Conway offered a prize of 
fifty dollars to the first person who could prove or disprove the conjecture before the end of 1970. 
The prize was won in November by a team from the Massachusetts Institute of Technology, led 
by Bill Gosper; the "Gosper glider gun" produces its first glider on the 15th generation, and another 
glider every 30th generation from then on. For many years, this glider gun was the smallest one 
known. In 2015, a gun called the "Simkin glider gun", which releases a glider every 120th generation, 
was discovered that has fewer live cells but which is spread out across a larger bounding box at its 
extremities.  

 

 

Gosper glider gun 
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Smaller patterns were later found that also exhibit infinite growth. All three of the patterns shown 
below grow indefinitely. The first two create a single block-laying switch engine: a configuration that 
leaves behind two-by-two still life blocks as its translates itself across the game's universe. The third 
configuration creates two such patterns. The first has only ten live cells, which has been proven to 
be minimal. The second fits in a five-by-five square, and the third is only one cell high. 

                                                              

 

 

 

Later discoveries included other guns, which are stationary, and which produce gliders or other 
spaceships; puffer trains, which move along leaving behind a trail of debris; and rakes, which move 
and emit spaceships. Gosper also constructed the first pattern with an asymptotically 
optimal quadratic growth rate, called a breeder or lobster, which worked by leaving behind a trail of 
guns. 

It is possible for gliders to interact with other objects in interesting ways. For example, if two gliders 
are shot at a block in a specific position, the block will move closer to the source of the gliders. If 
three gliders are shot in just the right way, the block will move farther away. This sliding block 
memory can be used to simulate a counter. It is possible to construct logic gates such as AND, OR, 
and NOT using gliders. It is possible to build a pattern that acts like a finite-state machine connected 
to two counters. This has the same computational power as a universal Turing machine, so the 
Game of Life is theoretically as powerful as any computer with unlimited memory and no time 
constraints; it is Turing complete. In fact, several different programmable computer 
architectures have been implemented in the Game of Life, including a pattern that simulates Tetris.  

Furthermore, a pattern can contain a collection of guns that fire gliders in such a way as to construct 
new objects, including copies of the original pattern. A universal constructor can be built which 
contains a Turing complete computer, and which can build many types of complex objects, including 
more copies of itself.  

In 2018, the first truly elementary knightship, Sir Robin, was discovered by Adam P. 
Goucher. A knightship is a spaceship that moves two squares left for every one square it moves 
down (like a knight in chess), as opposed to moving orthogonally or along a 45° diagonal. This is the 
first new spaceship movement pattern for an elementary spaceship found in forty-eight years. 
"Elementary" means that it cannot be decomposed into smaller interacting patterns such as gliders 
and still lifes. 

https://en.wikipedia.org/wiki/File:Game_of_life_infinite1.svg
https://en.wikipedia.org/wiki/File:Game_of_life_infinite2.svg
https://en.wikipedia.org/wiki/File:Game_of_life_infinite3.svg
https://en.wikipedia.org/wiki/Gun_(cellular_automaton)
https://en.wikipedia.org/wiki/Puffer_train
https://en.wikipedia.org/wiki/Rake_(cellular_automaton)
https://en.wikipedia.org/wiki/Asymptotically_optimal_algorithm
https://en.wikipedia.org/wiki/Asymptotically_optimal_algorithm
https://en.wikipedia.org/wiki/Quadratic_growth
https://en.wikipedia.org/wiki/Breeder_(cellular_automaton)
https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_complete
https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/Knight_(chess)


Undecidability 
Many patterns in the Game of Life eventually become a combination of still lifes, oscillators, and 
spaceships; other patterns may be called chaotic. A pattern may stay chaotic for a very long time 
until it eventually settles to such a combination. 

The Game of Life is undecidable, which means that given an initial pattern and a later pattern, no 
algorithm exists that can tell whether the later pattern is ever going to appear. This is a corollary of 
the halting problem: the problem of determining whether a given program will finish running or 
continue to run forever from an initial input.  

Indeed, since the Game of Life includes a pattern that is equivalent to a universal Turing 
machine (UTM), this deciding algorithm, if it existed, could be used to solve the halting problem by 
taking the initial pattern as the one corresponding to a UTM plus an input, and the later pattern as 
the one corresponding to a halting state of the UTM. It also follows that some patterns exist that 
remain chaotic forever. If this were not the case, one could progress the game sequentially until a 
non-chaotic pattern emerged, then compute whether a later pattern was going to appear. 

 

Self-replication 
On May 18, 2010, Andrew J. Wade announced a self-constructing pattern, dubbed "Gemini", that 
creates a copy of itself while destroying its parent. This pattern replicates in 34 million generations, 
and uses an instruction tape made of gliders oscillating between two stable configurations made of 
Chapman–Greene construction arms. These, in turn, create new copies of the pattern, and destroy 
the previous copy. Gemini is also a spaceship, and is the first spaceship constructed in the Game of 
Life that is an oblique spaceship, which is a spaceship that is neither orthogonal nor purely 
diagonal. In December 2015, diagonal versions of the Gemini were built.  

On November 23, 2013, Dave Greene built the first replicator in the Game of Life that creates a 
complete copy of itself, including the instruction tape.  

In October 2018, Adam P. Goucher finished his construction of the 0E0P metacell, a metacell 
capable of self-replication. This differed from previous metacells, such as the OTCA metapixel by 
Brice Due, which only worked with already constructed copies near them. The 0E0P metacell works 
by using construction arms to create copies that simulate the programmed rule. The actual 
simulation of the Game of Life or other Moore neighbourhood rules is done by simulating an 
equivalent rule using the von Neumann neighbourhood with more states. The name 0E0P is short 
for "Zero Encoded by Zero Population", which indicates that instead of a metacell being in an "off" 
state simulating empty space, the 0E0P metacell removes itself when the cell enters that state, 
leaving a blank space. 
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Iteration 
From most random initial patterns of living cells on the grid, observers will find the population 
constantly changing as the generations tick by. The patterns that emerge from the simple rules may 
be considered a form of mathematical beauty. Small isolated subpatterns with no initial symmetry 
tend to become symmetrical. Once this happens, the symmetry may increase in richness, but it 
cannot be lost unless a nearby subpattern comes close enough to disturb it. In a very few cases, the 
society eventually dies out, with all living cells vanishing, though this may not happen for a great 
many generations. Most initial patterns eventually burn out, producing either stable figures or 
patterns that oscillate forever between two or more states; many also produce one or more gliders or 
spaceships that travel indefinitely away from the initial location. Because of the nearest-neighbour 
based rules, no information can travel through the grid at a greater rate than one cell per unit time, 
so this velocity is said to be the cellular automaton speed of light and denoted c. 

 

Algorithms 
Early patterns with unknown futures, such as the R-pentomino, led computer programmers to write 
programs to track the evolution of patterns in the Game of Life. Most of the early algorithms were 
similar: they represented the patterns as two-dimensional arrays in computer memory. Typically, two 
arrays are used: one to hold the current generation, and one to calculate its successor. Often 0 and 
1 represent dead and live cells, respectively. A nested for loop considers each element of the current 
array in turn, counting the live neighbours of each cell to decide whether the corresponding element 
of the successor array should be 0 or 1. The successor array is displayed. For the next iteration, the 
arrays swap roles so that the successor array in the last iteration becomes the current array in the 
next iteration. 

A variety of minor enhancements to this basic scheme are possible, and there are many ways to 
save unnecessary computation. A cell that did not change at the last time step, and none of whose 
neighbours changed, is guaranteed not to change at the current time step as well, so a program that 
keeps track of which areas are active can save time by not updating inactive zones. 

  

 

The Game of Life on the surface of a trefoil knot 

To avoid decisions and branches in the counting loop, the rules can be rearranged from 
an egocentric approach of the inner field regarding its neighbours to a scientific observer's viewpoint: 
if the sum of all nine fields in a given neighbourhood is three, the inner field state for the next 
generation will be life; if the all-field sum is four, the inner field retains its current state; and every 
other sum sets the inner field to death. 
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To save memory, the storage can be reduced to one array plus two line buffers. One line buffer is 
used to calculate the successor state for a line, then the second line buffer is used to calculate the 
successor state for the next line. The first buffer is then written to its line and freed to hold the 
successor state for the third line. If a toroidal array is used, a third buffer is needed so that the 
original state of the first line in the array can be saved until the last line is computed. 

 

Glider gun within a toroidal array. 

The stream of gliders eventually wraps around and destroys the gun. 

 

 

Red glider on the square lattice with periodic boundary conditions 

 

In principle, the Game of Life field is infinite, but computers have finite memory. This leads to 
problems when the active area encroaches on the border of the array. Programmers have used 
several strategies to address these problems. The simplest strategy is to assume that every cell 
outside the array is dead. This is easy to program but leads to inaccurate results when the active 
area crosses the boundary. A more sophisticated trick is to consider the left and right edges of the 
field to be stitched together, and the top and bottom edges also, yielding a toroidal array. The result 
is that active areas that move across a field edge reappear at the opposite edge. Inaccuracy can still 
result if the pattern grows too large, but there are no pathological edge effects. Techniques of 
dynamic storage allocation may also be used, creating ever-larger arrays to hold growing patterns. 
The Game of Life on a finite field is sometimes explicitly studied; some implementations, such 
as Golly, support a choice of the standard infinite field, a field infinite only in one dimension, or a 
finite field, with a choice of topologies such as a cylinder, a torus, or a Möbius strip. 

Alternatively, programmers may abandon the notion of representing the Game of Life field with a 
two-dimensional array, and use a different data structure, such as a vector of coordinate pairs 
representing live cells. This allows the pattern to move about the field unhindered, as long as the 
population does not exceed the size of the live-coordinate array. The drawback is that counting live 
neighbours becomes a hash-table lookup or search operation, slowing down simulation speed. With 
more sophisticated data structures this problem can also be largely solved. 

For exploring large patterns at great time depths, sophisticated algorithms such as Hashlife may be 
useful. There is also a method for implementation of the Game of Life and other cellular automata 
using arbitrary asynchronous updates whilst still exactly emulating the behaviour of the synchronous 
game. Source code examples that implement the basic Game of Life scenario in various 
programming languages, including C, C++, Java and Python can be found at Rosetta Code.  

https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/File:Long_gun.gif
https://en.wikipedia.org/wiki/File:%D0%98%D0%B3%D1%80%D0%B0_%22%D0%96%D0%B8%D0%B7%D0%BD%D1%8C%22.gif
https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/Golly_(program)
https://en.wikipedia.org/wiki/M%C3%B6bius_strip
https://en.wikipedia.org/wiki/Hashlife
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Rosetta_Code


Variations 
Main article: Life-like cellular automaton 

Since the Game of Life's inception, new, similar cellular automata have been developed. The 
standard Game of Life is symbolized as B3/S23. A cell is born if it has exactly three neighbours, 
survives if it has two or three living neighbours, and dies otherwise. The first number, or list of 
numbers, is what is required for a dead cell to be born. The second set is the requirement for a live 
cell to survive to the next generation. Hence B6/S16 means "a cell is born if there are six 
neighbours, and lives on if there are either one or six neighbours". Cellular automata on a two-
dimensional grid that can be described in this way are known as Life-like cellular automata. Another 
common Life-like automaton, Highlife, is described by the rule B36/S23, because having six 
neighbours, in addition to the original game's B3/S23 rule, causes a birth. HighLife is best known for 
its frequently occurring replicators.  

Additional Life-like cellular automata exist. The vast majority of these 218 different rules produce 
universes that are either too chaotic or too desolate to be of interest, but a large subset do display 
interesting behavior. A further generalization produces the isotropic rulespace, with 2102 possible 
cellular automaton rules (the Game of Life again being one of them). These are rules that use the 
same square grid as the Life-like rules and the same eight-cell neighbourhood, and are likewise 
invariant under rotation and reflection. However, in isotropic rules, the positions of neighbour cells 
relative to each other may be taken into account in determining a cell's future state—not just the total 
number of those neighbours. 

 

A sample of a 48-step oscillator along with a 2-step oscillator and a 4-step oscillator from a two-

dimensional hexagonal Game of Life (rule H:B2/S34) 

 

Some variations on the Game of Life modify the geometry of the universe as well as the rule. The 
above variations can be thought of as a two-dimensional square, because the world is two-
dimensional and laid out in a square grid. One-dimensional square variations, known as elementary 
cellular automata, and three-dimensional square variations have been developed, as have two-
dimensional hexagonal and triangular variations. A variant using aperiodic tiling grids has also been 
made.  

Conway's rules may also be generalized such that instead of two states, live and dead, there are 
three or more. State transitions are then determined either by a weighting system or by a table 
specifying separate transition rules for each state; for example, Mirek's Cellebration's multi-coloured 
Rules Table and Weighted Life rule families each include sample rules equivalent to the Game of 
Life. 
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Patterns relating to fractals and fractal systems may also be observed in certain Life-like variations. 
For example, the automaton B1/S12 generates four very close approximations to the Sierpinski 
triangle when applied to a single live cell. The Sierpinski triangle can also be observed in the Game 
of Life by examining the long-term growth of a long single-cell-thick line of live cells, as well as in 
Highlife, Seeds (B2/S), and Wolfram's Rule 90.  

Immigration is a variation that is very similar to the Game of Life, except that there are two on states, 
often expressed as two different colours. Whenever a new cell is born, it takes on the on state that is 
the majority in the three cells that gave it birth. This feature can be used to examine interactions 
between spaceships and other objects within the game. Another similar variation, called QuadLife, 
involves four different on states. When a new cell is born from three different on neighbours, it takes 
the fourth value, and otherwise, like Immigration, it takes the majority value. Except for the variation 
among on cells, both of these variations act identically to the Game of Life. 

 

Music 
Various musical composition techniques use the Game of Life, especially in MIDI sequencing. A 
variety of programs exist for creating sound from patterns generated in the Game of Life. 

  

Notable programs 

 

The 6366548773467669985195496000th (6×1027) generation of a Turing machine, made in the game 

of Life, computed in less than 30 seconds on an Intel Core Duo 2 GHz CPU using Golly 

in Hashlife mode 
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https://en.wikipedia.org/wiki/File:Turing_Machine_in_Golly.png
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https://en.wikipedia.org/wiki/Hashlife


Computers have been used to follow Game of Life configurations since it was first publicized. When 
John Conway was first investigating how various starting configurations developed, he tracked them 
by hand using a go board with its black and white stones. This was tedious and prone to errors. 
While Conway was investigating the R-pentomino, John Francis, an undergraduate student at 
The University of Cambridge, wrote a program (for an IBM System/360 mainframe at the nearby 
Institute of Theoretical Astronomy) to check Conway's results. This program showed that the 
configuration had not reached a stable state after 1,000 generations. 

The first interactive Game of Life program was written in an early version of ALGOL 68C for 
the PDP-7 by M. J. T. Guy and S. R. Bourne. The results were published in the October 1970 issue 
of Scientific American, along with the statement: "Without its help, some discoveries about the game 
would have been difficult to make."  

Two early implementations of the Game of Life on home computers were by Malcolm Banthorpe 
written in BBC BASIC. The first was in the January 1984 issue of Acorn User magazine, and 
Banthorpe followed this with a three-dimensional version in the May 1984 issue. Susan Stepney, 
Professor of Computer Science at the University of York, followed this up in 1988 with Life on the 
Line, a program that generated one-dimensional cellular automata.  

There are now thousands of Game of Life programs online, so a full list will not be provided here. 
The following is a small selection of programs with some special claim to notability, such as 
popularity or unusual features. Most of these programs incorporate a graphical user interface for 
pattern editing and simulation, the capability for simulating multiple rules including the Game of Life, 
and a large library of interesting patterns in the Game of Life and other cellular automaton rules. 

 Golly is a cross-platform (Windows, Macintosh, Linux, iOS, and Android) open-source 
simulation system for the Game of Life and other cellular automata (including all Life-like cellular 
automata, the Generations family of cellular automata from Mirek's Cellebration, and John von 
Neumann's 29-state cellular automaton) by Andrew Trevorrow and Tomas Rokicki. It includes 
the Hashlife algorithm for extremely fast generation, and Lua or Python scriptability for both 
editing and simulation. 

 Mirek's Cellebration is a freeware one- and two-dimensional cellular automata viewer, 
explorer, and editor for Windows. It includes powerful facilities for simulating and viewing a wide 
variety of cellular automaton rules, including the Game of Life, and a scriptable editor. 

 Xlife is a cellular-automaton laboratory by Jon Bennett. The standard UNIX X11 Game of Life 
simulation application for a long time, it has also been ported to Windows. It can handle cellular 
automaton rules with the same neighbourhood as the Game of Life, and up to eight possible 
states per cell.  
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