
Test Automation Rules Engine

Programming Guide

The Test Automation Rules Engine is a tool that can be used for regression or features testing,

system configuration or production rollout validation. It can be used like a scripting language

but it has increased validation capacities. These validation features are what make the Rules

Engine so powerful for testing and validation.

There are actually two main components. One is the Rules Engine and the other is a Reporting

Interface which can be thought of as a wrapper for the Rules Engine. The Reporting Interface

takes commands and information from Jira tickets and reports back the test results and exhibit

attachments to Jira.

Table of Contents

Rules Engine Introduction 1

Sample Rules File 2

Supported Actions and Validations 3

Actions 3

Validations 4

Status Definitions and Validation Conditions 5

Reporting Interface Introduction 7

Sample Raw Text Manifest File 8

Sample JSON Manifest File 9

Sample Output File 10

Additional Notes 12

1

Rules Engine Introduction

The Rules Engine is executed using RulesNgn.py. It also uses the module RulesLib.py. The Rules

Engine takes instructions from a Ruleset input file. Rulesets are collections of Rules, each which

take on the form of Actions and Validations. Actions can be system commands or specific

functions as described below. Validations are a Status Definition followed by a Test Condition.

The Ruleset file is a CSV file, and can be edited with a text editor or a spreadsheet program.

Any line that begins with a “#” (pound) character is treated as a comment. The “#” (pound)

character also serves as a delimiter between actions and validations when it stands alone in a

field.

Each line of the Ruleset file can have one or more actions separated by commas, and/or one or

more validations separated by commas. The actions and validations are separated by a field

containing the “#” (pound) character as a delimiter. The delimiter field can have one or more

“#” (pound) characters, as desired for readability.

Line of the Ruleset file:

action1, action2, action3, etc, ##### , validation1, validation2, validation3, etc.

Lines are not required to have actions, nor are they required to have validations. It wouldn’t

make much sense to have a line that had neither an action nor a validation, but it is permissible.

It is definitely useful to have lines with only an action or only a validation. However, the output

of a command can only be tested on the line the command is executed on.

One useful case of an action without a validation is some system command that can be

expected to run, and doesn’t really need to be tested. In this case, no validation might be

tested.

A useful case of a validation without an action is a log parser. The ruleset might launch a

command which then generates a logfile or some other testable output. If multiple things

should be validated, then they can be put on subsequent lines after the initial command. The

only validation that must be put on the same line as the command is a validation that tests the

(stdout or stderr) output of the command.

2

Sample Ruleset file:

Rules.csv

Sample Rules File

dir > dir.txt ,###, PASS if exists dir.txt

touch none.txt ,###, FAIL if missing none.txt

exit 0 ,###, FAIL if error

exit 1 ,###, PASS if error

exit 244 ,###, PASS if equal 244

exit 51 ,###, FAIL if not equal 51

exit 5 ,###, PASS if has bits 4

exit 3 ,###, FAIL if has bits 4

echo This is a test > test.txt ,###, FAIL if missing test.txt

 ,###, PASS if contains "This" test.txt

echo stdout has data ,###, PASS if stdout contains "has data"

echo stderr has errors 1>&2 ,###, PASS if stderr contains "has errors"

echo stderr has data 1>&2 ,###, PASS if output contains has data

echo 0000 0001 0002 ,###, PASS if stdout equal "0000 0001 0002"

echo 0000 0001 0002 1>&2 ,###, PASS if stderr equal "0000 0001 0002"

echo 0000 0001 0002 ,###, PASS if stdout 0 equal 0000

echo 0000 0001 0002 ,###, PASS if stdout 1 equal 0001

echo 0000 0001 0002 1>&2 ,###, PASS if stderr 2 equal 0002

echo 4 ,###, PASS if stdout has bits 4

echo 4 ,###, PASS if output has bits 4

echo 4 1>&2 ,###, PASS if stderr has bits 4

echo 1 2 4 8 ,###, PASS if stdout 1 has bits 2

echo 1 2 4 8 1>&2 ,###, PASS if stderr 2 has bits 4

3

Supported Actions and Validations

Actions:

 TOUCH <file>

 WAIT ON FILE PRESENT <file>

 WAIT ON FILE ABSENT <file>

 WAIT <seconds>

 CAPTURE <sourcefile> <number> TO <targetfile>

 START <command> (runs command asynchronously, doesn't capture output or return code)

 <COMMAND> (runs command synchronously, waits for output and return code)

TOUCH acts the same as the UNIX “touch” command. It updates the file timestamp of a file

that exists, or creates a file of size zero if the file doesn’t exist.

WAIT ON FILE PRESENT is pretty self-explanatory. Execution of the ruleset pauses until the

specified file is present.

WAIT ON FILE ABSENT works the same way. Execution of the ruleset pauses until the specified

file is NOT present.

WAIT followed by a number waits that number of seconds.

CAPTURE works like the “tail” command in UNIX. A targetfile is created containing the number

of lines specified from the contents of the sourcefile. This creates a subset of the sourcefile

that starts at the time the capture command is executed.

START launches a command line program or system command. Execution is asynchronous, e.g.

run in the background.

COMMAND line programs or system commands can be launched as actions. Without the

“START” prefix, the command is run synchronously, so the ruleset waits for the command to

finish. The return code or (stdout or stderr) outputs of the command may be tested by the

validation section of the Ruleset parser.

4

Validations:

 Status Definitions:

 PASS, FAIL, WARN or EXIT

 Validation Conditions:

 if equal / if not equal <value> (checks program return code)

 if error (same as if not equal 0)

 if has bits <value>

 if exists <filename>

 if missing <filename>

 if contains <pattern> <filename>

 if tail <filename> <number> contains <pattern>

 if stdout [offset] equal <pattern> (looks at stdout string like args, offset optional, default 0)

 if stdout [offset] not equal <pattern>

 if stdout [offset] has bits <value>

 if stdout contains <pattern> (examines entire stdout string)

 if stderr [offset] equal <pattern> (looks at stderr string like args, offset optional, default 0)

 if stderr [offset] not equal <pattern>

 if stderr [offset] has bits <value>

 if stderr contains <pattern> (examines entire stderr string)

 if output [offset] equal <pattern> (looks at both stdout and stderr)

 if output [offset] not equal <pattern>

 if output [offset] has bits <value>

 if output contains <pattern>

5

 Status Definitions:

PASS provides a positive result when the validation condition is true.

FAIL provides a negative result when the validation condition is true.

WARN provides a positive result whether or not the validation condition is true, but gives a

warning if the validation condition is true.

EXIT provides a negative result and terminates ruleset execution immediately if the validation

condition is true.

 Validation Conditions:

if equal <value> returns true if the return code of the action is equal to value.

if not equal <value> returns true if the return code is NOT equal to value.

if error returns true if the return code is NOT equal to 0.

if has bits <value> returns true if the logical conjunction (Boolean AND) between value and the

return code is true.

if exists <filename> returns true if filename is present.

if missing <filename> returns true if filename is absent.

if contains <pattern> <filename> returns true if pattern is found within filename.

if tail <filename> <number> contains <pattern> returns true if pattern is found within the last

number lines in filename.

if stdout equal <pattern> returns true if pattern is equal to stdout from action command

output. Equivalency is determined using a string comparison.

if stdout <offset> equal <pattern> returns true if pattern is equal to arg[offset] of stdout from

action command output. So, for example, if the command returns “0000 0001 0002”, then

arg[0] is “0000”, arg[1] is “0001” and arg[2] is “0002”.

if stdout not equal <pattern> returns true if pattern is NOT equal to stdout from command.

if stdout <offset> not equal <pattern> returns true if pattern is NOT equal to arg[offset] of

stdout from command.

if stdout has bits <value> returns true if the logical conjunction (Boolean AND) between value

and stdout is true. The contents of stdout are expected to be a numeric value.

if stdout <offset> has bits <value> returns true if the logical conjunction (Boolean AND)

between value and arg[offset] of stdout is true. The contents of stdout are expected to be a

numeric value.

6

if stdout contains <pattern> returns true if stdout contains pattern.

if stderr equal <pattern> returns true if pattern is equal to stderr from action command output.

Equivalency is determined using a string comparison.

if stderr <offset> equal <pattern> returns true if pattern is equal to arg[offset] of stderr from

action command output. So, for example, if the command returns “0000 0001 0002”, then

arg[0] is “0000”, arg[1] is “0001” and arg[2] is “0002”.

if stderr not equal <pattern> returns true if pattern is NOT equal to stderr from command.

if stderr <offset> not equal <pattern> returns true if pattern is NOT equal to arg[offset] of

stderr from command.

if stderr has bits <value> returns true if the logical conjunction (Boolean AND) between value

and stderr is true. The contents of stderr are expected to be a numeric value.

if stderr <offset> has bits <value> returns true if the logical conjunction (Boolean AND)

between value and arg[offset] of stderr is true. The contents of stderr are expected to be a

numeric value.

if stderr contains <pattern> returns true if stderr contains pattern.

if output equal <pattern> returns true if pattern is equal to output (stdout+stderr) from action

command output. Equivalency is determined using a string comparison.

if output <offset> equal <pattern> returns true if pattern is equal to arg[offset] of output from

action command output. So, for example, if the command returns “0000 0001 0002”, then

arg[0] is “0000”, arg[1] is “0001” and arg[2] is “0002”.

if output not equal <pattern> returns true if pattern is NOT equal to command output.

if output <offset> not equal <pattern> returns true if pattern is NOT equal to arg[offset] of

command output.

if output has bits <value> returns true if the logical conjunction (Boolean AND) between value

and command output is true. The contents of output are expected to be a numeric value.

if output <offset> has bits <value> returns true if the logical conjunction (Boolean AND)

between value and arg[offset] of command output is true. The contents of output are expected

to be a numeric value.

if output contains <pattern> returns true if output contains pattern.

7

Reporting Interface Introduction

The Reporting Interface is a wrapper around the Rules Engine. It is executed using TestX.py and

also uses the module ReprtLib.py. TestX takes a manifest file as its input, which includes

metadata about the tests as well as test data and rulesets. If rulesets are included, then the

Rules Engine is triggered and the resulting logfile is captured. The output is a JSON message

with exhibits as attachments which can be digested by Jira for automated test execution and

reporting.

The manifest file can be in one of two formats, raw text or JSON. The raw text format has

key:value pairs separated with colons. The JSON format is exactly like the output format, and is

useful as a potential pass-through mechanism when used with other systems’ reporting

mechanisms. A JSON manifest file that contains attachments from associated systems can be

presented and these will be passed along to the output. If the manifest file contains a Ruleset,

it will be run and evidence will be collected and attached along with the existing contents of the

JSON manifest file.

There are a few differences between the formats beyond the formats, themselves. Said

another way, the Reporting Interface interprets and processes the two files slightly differently.

For example, the raw text form of the manifest file has three fields for each record in the

“evidences” section and five fields for each record in the “steps” section. Each field must be

present, although the values can be blank.

In the JSON format, the evidences section must have three fields, none of which can be blank.

The steps section must have “status” and “comments” fields populated or it must have

“filename”, “data” and “contentType” fields populated.

An implication of this is JSON attachments must be included as data within the JSON manifest

file, whereas attachments can be placed on the local drive rather than embedded in the text

form of the manifest file. The text version of the file can have a filename value but be absent

the data, in which case the Reporting Engine will look for the file on the local drive.

Additionally, the JSON format manifest file supports a “rules” section. It is similar to the “steps”

block, except it can only contain file structures using “filename”, “data” and “contentType”

fields. The rules block is not expected to have “status” or “comment” fields.

8

Sample Raw Text Manifest File:

Test Metadata

testKey : Jira-1000

status :

start :

finish :

comment : Test of the Rules Engine

examples :

defects :

evidences: data:filename:contentType

evidences :

data:TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0a

GlzIHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg

dGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu

dWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo

ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4=,

filename:evidence.txt, contentType:text/plain

steps: status:comment:data:filename:contentType

steps : status:, comment:Rules File, data:, filename:rules.csv, contentType:text/csv

Info Metadata

summary : Test of the Rules Engine

description : Tests for both the Rules Engine and Reporting Interface

user : wparham

9

Sample JSON Manifest File:

{

 "info": {

 "summary": "Test of the Rules Engine and Reporting Interface",

 "description": "Test single ruleset using JSON manifest file",

 "user": "wparham"

 },

 "tests": [{

 "testKey": "Jira-1001",

 "comment": "Ruleset is embedded below",

 "steps": [{

 "filename": "rules.csv",

 "contentType": "application/csv",

 "data":

"IyBydWxlcy5jc3YNCiMNCiMgcHJpbnRzICJ0ZXN0IE9ORSIgYW5kIHZlcmlmaWVzIHRoZSBvdXRwd

XQNCg0KZWNobyB0ZXN0IE9ORSAgICAgICwjIyMsICAgICBQQVNTIGlmIG91dHB1dCBlcXVhbCAid

GVzdCBPTkUi"

 }]

 }]

}

10

Sample Output File:

 {

 "info": {

 "summary": "Test of the Rules Engine and Reporting Interface",

 "description": "Test single ruleset using JSON manifest file",

 "user": "wparham",

 "startDate": "2019-02-28T12:37:37+0000",

 "finishDate": "2019-02-28T12:37:37+0000"

 },

 "tests": [{

 "testKey": "Jira-1001",

 "comment": "Ruleset is embedded below",

 "start": "2019-02-28T12:37:37+0000",

 "finish": "2019-02-28T12:37:37+0000",

 "status": "PASS",

 "evidences": [{

 "filename": "rules.log",

 "contentType": "text/plain",

 "data":

"PT0+IFByb2Nlc3NpbmcgWy4vcnVsZXMuY3N2XSBSdWxlcyBGaWxlLg0KPT0+IFJ1bGVzIEZpbGUg

Wy4vcnVsZXMuY3N2XSBjb250YWlucyAoNSkgbGluZXMsICgxKSBjb250YWluaW5nIHJ1bGVzLg0K

PT0+IFN0YXJ0IHJ1biBhdCAyMDE5LTAyLTI4IDEyOjM3OjM3DQogIDEgY21kOiBlY2hvIHRlc3QgT05

FDQogIDEgdHN0OiBQQVNTIGlmIG91dHB1dCBlcXVhbCAidGVzdCBPTkUiDQo9PT4gUEFTUyBhdC

AyMDE5LTAyLTI4IDEyOjM3OjM3DQo9PT4gUEFTUyBbLi9ydWxlcy5jc3ZdIC0gQWxsIHRlc3RzIHN1

Y2NlZWRlZCBhdCAyMDE5LTAyLTI4IDEyOjM3OjM3DQo="

 }

],

 "steps": [{

11

 "contentType": "application/csv",

 "filename": "rules.csv",

 "data":

"IyBydWxlcy5jc3YNCiMNCiMgcHJpbnRzICJ0ZXN0IE9ORSIgYW5kIHZlcmlmaWVzIHRoZSBvdXRwd

XQNCg0KZWNobyB0ZXN0IE9ORSAgICAgICwjIyMsICAgICBQQVNTIGlmIG91dHB1dCBlcXVhbCAid

GVzdCBPTkUi"

 },

 {

 "status": "EXECUTING",

 "comment": " 1. echo test ONE"

 },

 {

 "status": "PASS",

 "comment": " 1. PASS if output equal \"test ONE\" at 2019-02-28 12:37:37"

 }

]

 }]

 }

12

Additional Notes:

Any output file can be renamed “manifest” and re-run as an input file. This provides pass-

through functionality to allow information to be concatenated by various systems. A single

message can be passed from system to system, with information added to it as needed.

Once a manifest file is run, any Rulesets contained in the “steps” or “rules” sections will be run.

The output logfile will be attached in the “evidences” section and a parsed version will be

appended as status/comment values in the “steps” section.

Subsequent runs will not re-run a Ruleset, so the output file will exactly match the input file.

But if new Rulesets are added, they will be run.

Files contained in the “evidences”, “steps” and “rules” sections are always decoded and written

to the local drive for the duration of the run. They can be captured or kick off processes on the

local machine. After TestX completes, the files written to the local drive are deleted but they

are not deleted from the manifest file.

