
Microservices

What they are and how they

benefit us

From then to now:
 “In the beginning…”

1. Non-structured languages
Non-structured programming is the earliest

programming paradigm used in general-purpose

(Turing-complete) computer systems.

Examples of non-structured programming languages:

 Assembler / Machine Code
 COBOL
 FORTRAN

 BASIC

Usually optimized at the machine code level, using things

like end call optimization.

2. Early structured languages
The next evolution was procedural programming.

Procedural programming breaks code into function

blocks, which are parts of the program that perform a

specific purpose. A “main” function is generally used

which calls each of the individual functions in

sequence to perform the overall application task.

Examples of structured languages using procedural

programming:

 ALGOL
 C

Usually optimized similarly to non-structured languages,

but additionally using structures like heap versus stack and

reducing pushes and pops on/off the stack.

3. Interpreters vs. Compilers

 Interpreters allow the programmer to distribute

and run source code. The interpreter converts

the code to machine language during the

execution phase. The benefit is that it is simple

to distribute and run a program, but the

disadvantage is that it is slow.

 Compilers analyze and convert a program into

machine-language before it is run. This extra

step adds complexity, but it allows error-

checking in advance of runtime and it also makes

the program run much faster because the

system doesn’t have to interpret the source

code at runtime.

 Compilers are faster, but interpreters are

sometimes easier to use.

4. Object-oriented languages
Another form of structural programming – developed

after procedural – was called object-oriented. It

grouped programming units into objects and classes,

with classes being a “blueprint” for a block of code

that defines a specific functional item containing data

definitions and functions that are useful for dealing

with that data. The class is used to create an instance

of one or more objects. Examples of object-oriented

languages include:

 Simula (Algol family)

 Smalltalk

 C++ (C family)

 Java

 Python

Object-oriented languages allow programming concepts to

be “compartmentalized” in a way that optimizes source-

code maintenance.

A note about optimizations

The benefits of structured languages aren’t so much for

execution speed but more to make the code more

manageable. Some benefits make the code arguably more

robust, but mostly it is done so that complex source code

can be written. It’s an organizational tool.

The truth is that most of the things that make advanced

programming languages useful actually slow down the

compiled binary. But it is more than made up by other

tools in the modern software arsenal.

As an example, consider the (often despised) global

variable compared with a private member variable in a

class that is exposed with getter and setter member

functions.

Access to a global variable is much faster than access to a

private member variable through a getter or setter

function. Access to a global variable is just a matter of

reading or writing a particular memory location, whereas

getter and setter functions require stack manipulation,

which is much more processor-intensive. But the concept

of using a private member variable protects manipulation

of that variable by accident or by aberrant code.

So the benefits of modern structured programming are

much more for source code organization than they are for

performance. The benefits are seen in speed to develop,

test and maintain. And that includes developing other

tools to enhance performance, like memory managers,

load balancers and the like.

You can compare modern languages to superchargers. A

supercharger is driven by the engine, so it robs power

from it. But the power gains made from boosted intake

pressure more than make up for the loss.

5. The push for Portability

 Standardized languages
Early non-structured languages were proprietary

and so even language “families” had slightly

different commands. So the first attempts to

make portable code focused on standardizing

languages, making them have the same

command set on different machines.

 Libraries and device drivers
Standardized languages were a step forward, but

this still left all device access specific to the

platform. To standardize access to peripherals,

libraries and device drivers were formed. That

allowed access to devices to be abstracted from

the programmer. For example, file I/O is

performed with a library call that accesses

device drivers specific to the system. The source

code works without modification on various

platforms, just by compiling on that platform.

 Interpreters within Virtual Machines
As systems became more and more complex, the

build process also became more and more

complex. Also – perhaps more importantly –

distribution to various platforms could be

difficult where there is a mix of hardware. So in

1991, SUN Microsystems developed Java, which

essentially went back to an interpreted model. It

allowed the distribution of code to various

machine types, each with its own machine-

specific virtual machine that would run the code.

 Compiling at runtime
Allows the system or the VM to run a compiled

and/or partially-compiled and optimized

program from distributed source.

6. Parallel Processing

 Shared-memory
Works best for tightly coupled applications,

highly application-specific, requires semaphores

and/or other locking mechanisms, often used in

hardware, e.g. hardware cache.

 Message-passing
Works best for code that is “naturally

parallelizable,” e.g. algorithms or processes that

can be easily split and rejoined without locking

and/or race problems.

 Distributed computing
Multi-node peer-to-peer networks – essentially a

high-level message-passing architecture.

 Multiple-core processors
Employ shared-memory or message-passing

approaches, but tend to favor shared-memory

via caching.

7. Synchronous vs Asynchronous

 Synchronous code executes in a linear

fashion and cannot take advantage of

parallelism.

 Asynchronous code has inputs and outputs

that do not need to be synchronized, so it can be

parallelized.

8. Dependency-injection

 Much like an advanced library.

 An abstraction layer for subsystem types.

 Allows the development environment to specify a

software component or even a whole subsystem type

without being tied to interface details.

 Makes it relatively easy to switch between software

components, services, vendors and even whole

subsystems.

 Testing can be accomplished by mocking components

or whole subsystems

 Vendor ties are relaxed because subsystems are

abstracted, e.g. database

9. VMs evolve into Containers
 Until 2010 or so, most applications software ran

either on dedicated servers or in virtual

machines on servers.

 Virtual machines virtualize an entire operating

system, and they have software managers to

control access to physical devices.

 In 2013, Docker created a “platform as a service”

product that virtualized applications and

configurations as a bundle or “container” that

can be run on a computer.

 Only the application is virtualized, not the entire

operating system. The Docker container

communicates with the operating system, so all

Docker instances share the resources of the

server. It is very much like a VM, but it doesn’t

include the OS.

 So virtual machines are “fat” compared to

containers

 Examples of containers:

o Docker

o Kubernetes

o Containerd

o Podman

10. Container Managers

 Container managers automate the creation,

deployment and scaling of containers. Container

management facilitates the addition,

replacement and organization of containers,

which is important in complex systems of large

scale.

 Some available container managers:

o Kubernetes

o Google Cloud Platform

o Microsoft Azure

o Amazon AWS

11. Microservices

 Microservices bring all of this together.

 They are the latest software evolution.

 They use development frameworks like Spring

Boot, which employs Java and Dependency

Injection as well as several other technologies

that reduce boiler plate code. For example,

Lombok removes the need to write getters and

setters.

 Unit and integration test tools are “built-in,”

making unit tests, regression tests and

integration tests more integrated with

development. Of course, an application can still

be written without any built-in tests, but it is

part of the framework and has become

increasingly embraced by developers.

 Microservices can be run on an individual

developer’s system, on a test system, on a

dedicated production server or on a cloud

server.

 Microservices allow porting of legacy systems in

small chunks. A portion of the legacy code – a

service – can be coded as a microservice and the

legacy application can be modified to use it.

 Little by little, a large monolithic application can

be ported to the cloud by replacing subsystems

with microservices in small, easily managed

sprints.

 Microservices tend to be parallelizable.

Asynchronous code (like WebFlux) is highly

parallelizable. But even blocking code can be

parallelized by tools like Kubernetes, given its

ability to expand and contract – spinning up

containers as needed.

 Reliability is enhanced because a blocked and

hung (container) process can be automatically

killed by Kubernetes and another spun up.

 Of course, the biggest advantages are seen in

stateless processes – whether coded with

blocking or flux code – because stateless

processes can be asynchronously executed.

 Stateful processes require additional

consideration.

 Note that a Microservice can be written with

other tools. A C++ application can be written

and compiled, launched in Docker containers,

managed by Kubernetes and deployed in an on-

prem or offsite cloud server.

 But the most common Microservice code is Java,

because of its platform-agnostic nature.

Conclusion
One of the promises of “the cloud” is the ability to take

advantage of technologies that exploit concurrency. Load

balancers can expand and contract containerized code, adding

services as needed and then taking them down when load

relaxes. Of course, to take advantage of this, the code must be

parallelizable.

A database that is written to is a stateful application of shared

memory. It responds best to shared-memory techniques, like

caching and striping.

However, a read-only database can be easily parallelized with

multiple copies. Read-only Lookup tables and rulesets (for rules

engines) can be distributed to multiple container instances.

So careful planning really helps an organization take advantage

of microservice architectures.

They can be quickly and easily implemented, so by starting

small, an enterprise can begin to take advantage of

microservices almost overnight. A complex system can be

made with multiple microservices, each with its own specific

task. Changes to any of the microservices can be made without

affecting any of the others, so feature changes, regression

testing and maintenance releases are much less painful than in

larger monolithic applications.

