Retroleum Eight bits should be enough for anyone..

. An 8-bit IDE interface

Although there are now technically simpler storage options for hobby projects, the 40 pin ATA IDE
interface is still a ubiquitous, well documented connector which allows hard drives and Compact Flash
cards (via a simple adapter) to be used. The only real complication is that ATA IDE has a 16 bit data bus,
so an interface must be made in order to connect devices to 8 bit systems.

The IDE connector pin-outs:

/Reset - 1 2 - Ground

Data7 - 3 4 - Data 8

Data6 - 5 6 - Data 9

Datab - 7 8 - Data 10

Data4d - 9 10 - Data 11

Data3 - 11 12 - Data 12

Data2 - 13 14 - Data 13

Datal - 15 16 - Data 14

Datao - 17 18 - Data 15

Ground - 19 20 - No pin (Key)

DMARQ - 21 22 - Ground

/Write - 23 24 - Ground

/Read - 25 26 - Ground

IORDY - 27 28 - CSEL (Cable select)

DMACK - 29 30 - Ground

IRQ - 31 32 - Obsolete: no connection (formerly "IOCS16")
Addrl - 33 34 - PDIAG / CBLID (UDMA detect)
Addro - 35 36 - Addr2

/CSe - 37 38 - /CS1

DASP - 39 40 - Ground

All pins are TTL compatible, control signals are active low. (Note about using Compact Flash cards in
“True ATA mode” via IDE adapters: According to the spec sheet, these cards require CMOS level logic
inputs — so when running with Vcc at 5 volts, logic highs should be a minimum of 4v. This wont be an
issue using 74HC series logic from a 5 volt system such the Z80 but its worth bearing in mind if mixing
logic families etc.)

Pin Descriptions:

Data 0 — Data 15: The 16 bit bidirectional data bus

Addr0 — Addr2: 3 bit address bus (inputs)

CS0 & /CS1 — Chip Select inputs (gates the device onto the bus)

/Read & /Write — input (pulse low with Address steady and Chip Select low to read or write)
/Reset — (input) reset the drive’s hardware,

The “DASP” pin is open collector and can be used as a drive activity indicator when connected to a LED
from Vcce via a resistor.

Most home-brew IDE circuits I have seen leave the DMARQ, DMACK, IORDY, PDIAG, CSEL and IRQ
lines nconnected, however the following may be worthy of note:

DMARQ is an output from the drive used in high speed DMA transfers so presumably can be ignored.

DMACK is an input at the drive used to acknowledge DMA mode — I noted that the Compact Flash ATA
mode spec sheets say if there is no DMA-mode ability in the host (as there wouldn’t be for a simple
interface) DMACK should be driven high.

IORDY is an output from the drive which can be used to slow down read/write cycles if they are too quick
(ie: insert wait states) I have not used this signal. The ATA spec sheet suggests it be pulled high with a 1k
resistor min (presumably, that’s only if it is to be used by the host circuit.)

“CSEL” is used for “cable select” of master and slave drives when using a special cable. In Cable Select
mode, drives pull their CSEL inputs up via a 10K resistor, and this signal can pull the input down to
Ground (so at the host end CSEL should be grounded). “Cable Select” IDE cables have the CSEL
conductor cut beyond the the first drive connector on the lead, this way the first device sees itself as the
master (pulled down to Gnd) and the second sees itself as slave (not pulled down). If in doubt use the
Master and Slave jumpers on the drives, this line then become irrelevent.

Interface requirements:

Basic IDE readiwrite timing (non-Dhs)

Basic IDE Timing - click to enlarge

IDE devices are accessed via 16 registers which you read and write to just like normal memory locations.
Certain registers accept commands (eg: “read sector’) others report error status flags etc. Most of the
registers can be thought of as 8 bit bytes as only D0:D7 return and accept useful data. It is only data being
read from or written to the disk that is transferred as 16 bit words (there’s more detail on this below). The
two chip select lines activate a different set of registers: When /CS0 goes low, registers 0-7 are accessed,
and when /CS1 goes low 8-15 are accessed.

A basic 8 bit interface must handle the 16 bit databus, a 3 bit address bus, 2 chip select lines, /Read &
/Write lines. (/Reset can be tied to the host system’s reset line) To convert 8 to 16bit you can use two 8 bit
latches, one for outgoing data and one for incoming data. When reading the low half of the IDE data bus,
the high 8 bits can be latched, you can then read the contents of the latch afterwards. When writing, you
write the high byte to the other 8 bit latch, and this byte is presented to the high part (D8:D15) of the IDE
databus when you write the low half (D0:D7) directly. It’s probably best to also include a bus-transceiver
(EG: 74HC245) in the interface to provide a single load point to the host’s databus, it isn’t absolutely
necessary though.

My interface schematic - click to enlarge

The address lines A0:A2 can be routed directly from the host to the IDE bus or latched (which would
mean a little more read/write preamble in your driver software). The IDE chip select lines /CS0:/CS1 need
to be decoded from the host’s address bus and port enable line (EG: Z80’s /IOREQ) Tip: You typically
dont need to access IDE registers 8 to 15 so /CS1 can just be pulled high via a resistor. Alternatively /CSO
& /CSI1 can be latched (eg: in the same IC as the address lines A0:A2).

Depending on how you handle the IDE chip select lines, /RD & /WR can be routed direct from the host’s
processor or via decoding logic. More logic is required to operate the latches’ clock pulses and output
enables appropriately and to decode the port address mapping the IDE interface into the processor’s
address space. Timing is important, you want the IDE /WR and IDE /RD lines to pulse low whilst the IDE
chip select signals (/CSO or /CS1) are stable and active.

Also, if writing through a bus transceiver, you need to ensure its outputs are enabled and the data direction
remains stable until after the /WR line has gone high. Such timing can be achieved asynchronously by
utilising the propagation delays associated with logic gates. A more reliable approach is to use the host’s
CPU clock and D-type flip-flops to keep things in check.

Z40 POAT READYWRITE & IDE WTERFETE TIRIKG

= L
s [| o i 1
] 1 !
m 1]

My interface timing - click to
enlarge

My own Z80 IDE interface (shown above right, which I’ve tested up to 8Mhz so far) was based on 7
discrete logic chips (74HC245 bus transceiver, 2 x 74HC574 8bit latch, 74HC139 dual 2-to-4 line decoder,
74HCTO08 quad AND gate, 74HC32 quad OR gate, 74HC74 dual D-type flip flop). It uses the Z80 clock
signal and some flip flops to ensure the various chip outputs are left open at the correct times (see diagram
on the right). The address lines are unbuffered and I’ve used the Z80 address line A3 to dictate whether

access is being made to the low half of the IDE databus or the high (IE: the latch ICs). For example: if
mapped the IDE system to port range $40-$4F and wanted to send $1234 to the IDE device I would use:

1d a,$34
out ($48),a ;’pre-write” high byte to latch

1d a,$12
out ($40),a ;write low byte (high byte presented from latch)

(Incidentally, the “pointless” first AND gate in the schematic acts simply as a LVTTL->CMOS level
converter (I used a 74HC*T*08 chip). This is because my port decode signal was sourced from a 3.3v
FPGA IC.)

Software: Simple IDE driver

The ATA protocol has been expanded to very complicated levels over the years but the drives still run fine
on the default non-DMA modes (ie: mode0 to mode6.) Access can be pretty straightforward: You tell the
device the sector number you want to access, give it a command and then transfer the data, checking status
flags at the appropriate times.

Here’s a run down of the IDE registers accessed by A0-A2 and /CS0 & /CS1 — some simplifications have
been made. EG: I’ve ignored all the old head/cylinders/sectors way of addressing sectors as that’s ancient
history. Using the LBA (Logical Block Address) mode is way more logical: Each sector is simply
addressed sequentially, via the 28 bit address held in registers $3-$6 (Incidentally, this is where the pre-
LBA48 137GB drive size limit comes from in Windows: 2”28 sectors * 512 bytes = ~137GB)

IDE reg: A@-A2: /CS@: /CS1: Use:

$0 000 0 1 IDE Data Port

$1 001 0 1 Read: Error code

$2 010 0 1 Number Of Sectors To Transfer

$3 011 0 1 Sector address LBA © (0:7)

$4 100 0 1 Sector address LBA 1 (8:15)

$5 101 0 1 Sector address LBA 2 (16:23)

$6 110 0 1 Sector address LBA 3 (24:27) (also see **)
$7 111 0 1 Read: "Status", Write: Issue command to drive
$8 000 1 0 Not Important

$9 001 1 0 Not Important

$A 010 1 0 Not Important

$B 011 1 (%] Not Important

$C 100 1 0 Not Important

$D 101 1 0 Not Important

$E 110 1 0 Not Important

$F 111 1 0 Not Important

** Bits in register $6:

Bit ©:3 = LBA bits (24:27)

Bit 4 = Select Master (@) or Slave (1) drive
Bit 5 = Always set to 1

Bit 6 = Always Set to 1 for LBA Mode Access
Bit 7 = Always set to 1

Some detail:
Register $0 is the 16 bit data register. You read and write sector data words to and from this address.

Register $1: Can be read for more detail when the ERR (bit 0) in STATUS (reg $7) below is set:

Bit: Condition:

0 1 = DAM not found

1 1 = Track 000 not found

2 1 = Command aborted

3 Reserved

4 1 = ID not found

5 Reserved

6 1 = Uncorrectable ECC error
7 1 = Bad block detected

Register $2 holds the number of sectors you want to transfer in one go, typically 1.
Registers $3 — $6 hold the address of the sector you want to access (see note about register 6)

Register $7 accepts commands when written to and reports the drive status when read.
IDE Register $7 WHEN WRITTEN = Send command to drive.

Some key commands (there's loads more besides) :-

$20 - Read sectors with retry

$30 - Write sectors with retry

$EC - Identify drive

IDE Register $7 WHEN READ = drive status:

Bit: Name: Condition:

@0 ERR 1 = Previous command ended in an error

1 IDX (not important)

2 CORR (not important)

3 DRQ 1 = Data Request Ready (Sector buffer ready for transfer)
4 DSC (not important)

5 DF 1 = Write Fault

6 RDY 1 = Ready for command

7 BUSY 1 = Controller is busy executing a command.

Sending commands

The “Identify drive” command is useful as it tells you your interface is working (without having to read
anything from the disk itself). The command returns 256 words of data containing a lot of info about the
connected/selected drive including the device name in ASCII (40 chars @ byte offset $36) and the
capacity of the drive in sectors (2 words @ byte offset $72, least significant first).

The procedure for getting a drive’s ID is:

1. Make sure BUSY=0 and RDY=1 before proceding.

2. Select the drive master/slave with appropriate write to IDE reg $6.
3. Send “Drive ID Command” ($EC) to Command Register $7

4. Wait until BUSY=0 and DRQ=1

5. Check error flags.

6. Read 256 words from data port 0.

The procedure for reading a sector is:

1. Make sure BUSY = 0 and RDY =1 before proceding.

2. Tell the drive what sector is required (fill in the LBA address regs)
3. Set number of sectors to transfer to 1 (reg $2)

4. Issue read sector command ($20) to reg $7

5. Wait until BUSY=0 and DRQ=1

6. Check error flags.

7. Read 256 words from data port 0.

The procedure for writing a sector is:

1. Make sure BUSY =0 and RDY = 1 before proceding.

2. Tell the drive what sector is to be written (fill in the LBA address regs)
3. Set number of sectors to transfer to 1 (reg $2)

4. Issue write sector command ($30) to reg $7

5. Wait until BUSY=0 and DRQ=1

6. Write 256 words to data port 0.

7. Wait for BUSY to become clear and RDY to become set.

8. Check error flags.

Bytes from the 'Get ID' command. Note the drive
name.

A note about byte ordering: When you read the words from the IDE device and copy them to your sector
buffer you can chose to order them in big or little endian byte format. If you store them in a little-endian
system (Z80, Intel) then the ASCII characters from the Get ID command will be out of sequence because
the IDE specifications dictates that the ASCII bytes in the Device ID “sector” are interpreted with the high
byte as the first character of each pair. [E: (Word N) “bits 15:8”, “bits 7:0”, (Word N+1) “bits 15:8”, “bits

7:0” etc etc.. In my IDE code, I save the words big-endian style as a simple way to avoid this, but it does
mean that if you use my code to read *actual data sectors from existing file-systems*, each byte pair will
appear switched around. Well, that’s about for the basics of reading and writing to an IDE drive a sector at
a time. Here’s the core Z80 source code I programmed to operate my Z80 interface. There’s no warranty
and it may have bugs (though it works OK for me:) “Educational use only!” as they say..

Notes:

This kind of interface is ripe for integration into a CPLD / FPGA etc — but beware of voltage levels and
ground bounce issues. EG: I once had major problems with a glitch on the /CSO0 line causing random
double clocking when transferring the data words from sectors. Also note that the above interface, based
on discrete logic relies on the propagation delay of 3 gates to seperate /CS0O and /RD going inactive (t9).
On a CPLD/FPGA you cannot

rely on such things.

File systems: If you need to load and save real files and not just log sectors, you will of course need a file
system. The FAT file system is reasonably well documented on the net or you could do what I did and
make your own (see the Z80 Project)

Further Reading;

CompactFlash.Org — Specs available for download etc

Peter Faasse’s 8255 to IDE interface

Compact Flash to IDE adapters on ebay UK

Hans Summer’s IDE interface

(Old)_ATA spec text file

Official ATA specs — very detailed (too much so in fact)

Calendar

October 2022
MTWTTFS S
1 2
3456789
1011 1213141516
17 18 19 20 21 22 23
24 2526272829 30
31
«Sep

Archives

September 2021
May 2020
January 2020
April 2019
March 2019

November 2018
November 2017
September 2017
July 2017

June 2017
April 2017
November 2016
April 2016
October 2015
July 2015

April 2015
December 2014
November 2014
October 2014
July 2014

June 2014

May 2014
April 2014
February 2014
January 2014
December 2013
November 2013
August 2013
July 2013

June 2013

May 2013

April 2013
November 2012
October 2012
June 2012

May 2012
January 2012
October 2011
September 2011
July 2011

May 2011
January 2011
September 2010
July 2010

April 2010
February 2010
November 2009
August 2009
July 2009

June 2009

May 2009
February 2009
January 2009
September 2008
August 2008
May 2008
April 2008

Recent Articles

SMART Card V3

DiagROM v1.50

DiagROM v1.47

DiagROM V1.40

Restoring the white ZX Spectrum case logo
Snapload V3.2

LOAD *»

Long filename support for SMART Card
SMART Card V2

A Slight Switcheroo

Links

Categories

o Site updates (1)
e 780 Project (67)

Meta

Entries (RSS)
Comments (RSS)
WordPress
Login

Powered by WordPress
Website hosted by D.Dolby

